1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
3 years ago
12

A 39-foot ladder is leaning against a vertical wall. If the bottom of the ladder is being pulled away from the wall at the rate

of 8 feet per second, at what rate is the area of the triangle formed by the wall, the ground, and the ladder changing, in square feet per second, at the instant the bottom of the ladder is 36 feet from the wall?
Physics
1 answer:
Viefleur [7K]3 years ago
3 0

Answer:

The rate of change of the area when the bottom of the ladder (denoted by b) is at 36 ft. from the wall is the following:

\frac{dA}{dt}|_{b=36}=-571.2\, ft^2/s

Explanation:

The Area of the triangle is given by A=h\times b where h=\sqrt{l^2-b^2} (by using the Pythagoras' Theorem) and b is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.

The area is then

A=\sqrt{l^2-b^2}b

The rate of change of the area is given by its time derivative

\frac{dA}{dt}=\frac{d}{dt}\left(\sqrt{l^2-b^2}\cdot b\right)

\implies \frac{dA}{dt}=\frac{d}{dt}\left(\sqrt{l^2-b^2}\right)\cdot b+\frac{db}{dt}\cdot\sqrt{l^2-b^2}

\implies\frac{dA}{dt}=\frac{1}{2\sqrt{l^2-b^2}}\frac{d}{dt}(l^2-b^2)\cdot b+\sqrt{l^2-b^2}}\cdot \frac{db}{dt} Product rule

\implies\frac{dA}{dt}=-\frac{1}{2\sqrt{l^2-b^2}}\cdot 2\cdot b^2\cdot \frac{db}{dt}+\sqrt{l^2-b^2}}\cdot \frac{db}{dt} Chain rule

\implies\frac{dA}{dt}=-\frac{1}{\sqrt{l^2-b^2}}\cdot b^2\cdot \frac{db}{dt}+\sqrt{l^2-b^2}}\cdot \frac{db}{dt}

\implies\frac{dA}{dt}=\frac{db}{dt}\left(-\frac{1}{\sqrt{l^2-b^2}}\cdot b^2+\sqrt{l^2-b^2}}\right)

In here we can identify b=36\, ft, l=39 and \frac{db}{dt}=8\,ft/s.

The result is then

\frac{dA}{dt}=8\left(-\frac{1}{\sqrt{39^2-36^2}}\cdot 36^2+\sqrt{39^2-36^2}}\right)=-571.2\, ft^2/s

You might be interested in
Which type of joint function as a suture to tightly bind bones together so they dont move?
netineya [11]
Fibrous joint functions as a suture to tightly bind bones together so they do not move.
7 0
3 years ago
  The diagram shows a tray of marbles being shaken from side to side.  As this happens some of the marbles jump out of the tray.
irakobra [83]
The marbles that are 'more energetic' fall out of the tray, in the same way particles have enough energy to escape and turn into a gas.
8 0
3 years ago
1. What is wave motion
nadya68 [22]
A wave is basically propagation of disturbances—that is, deviations from a state of rest or equilibrium—from place to place in a regular and organized way. Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties.
8 0
2 years ago
21) A youngster having a mass of 50.0 kg steps off a 1.00 m high platform. If she keeps her legs fairly rigid and comes to rest
zlopas [31]

Answer:

-22,150 N

Explanation:

When the youngster jumps off the platform, during the fall her initial potential energy is converted into kinetic energy, according to the law of conservation of energy. Therefore, we can write:

mgh=\frac{1}{2}mu^2

where the term on the left is the potential energy while the term on the right is the kinetic energy, and where

m = 50.0 kg is the mass of the youngster

g=9.8 m/s^2 is the acceleration due to gravity

h = 1.00 m is the heigth of the platform

u is the speed of the youngster as she reaches the floor

Solving for u,

u=\sqrt{2gh}=\sqrt{2(9.8)(1.00)}=4.43 m/s

Then, when the youngster hits the floor, the force exerted on her during the deceleration is given by:

F=\frac{\Delta p}{\Delta t}=\frac{m(v-u)}{\Delta t}

where \Delta p is her change in momentum, and where

m is the mass

v = 0 is the final velocity (she comes to a stop)

u = 4.43 m/s is the initial velocity

\Delta t=10.0 ms =0.010 s is the duration of the collision

Substituting,

F=\frac{(50.0)(0-4.43)}{0.010}=-22150 N

And the negative sign means the direction of the force is opposite to the motion (so, upward).

6 0
3 years ago
How long will it take the officer to catch the thief?
jenyasd209 [6]

Answer:

can take a lot of time

Time is money

Explanation:

3 0
3 years ago
Other questions:
  • What is the net force on this object?
    8·2 answers
  • A 2.16 x 10-2-kg block is resting on a horizontal frictionless surface and is attached to a horizontal spring whose spring const
    12·1 answer
  • Is there a such thing as an elastic collision? Why do we study the case of the elastic collision in Physics?
    8·1 answer
  • An 8 Ω resistor is connected to a battery. The current that flows in the circuit is 2 A. Calculate the voltage of the battery.
    6·1 answer
  • Gamma rays
    14·1 answer
  • A current of 17 A flows through a resistor of 10 2. What is the voltage<br> across the resistor
    10·1 answer
  • Carlota does 2000 J of work on a machine. The machine does 500 J of work. What is the efficiency of the
    7·2 answers
  • PLEASE HELP!!!!!!!!! 30 POINTS
    15·1 answer
  • How can stretching affect the range of motion of the neck? Hypothesis
    7·1 answer
  • Explain why a black and white aeronautical map would be difficult to use
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!