Answer: Use Roman Numerals in answering. 11. - 27310189. ... Hiwalay! Hatol. Unang puntos, Bughaw! 12. Hinto! Pula, pangalawang laglag. Panalo ...
Explanation:. Hinto! Hiwalay! Bughaw, 1 puntos. Unang paglabag! 14. Hinto! Bughaw, pangalawang paglabag
Answer:
Explanation:
From work energy theorem
Work done by all forces = Change in kinetic energy
Lets take
m= mass of object
h=height from the ground surface
initial velocity of object = 0 m/s
The final velocity of object is v
Work done by gravitational force = m g . h
The final kinetic energy = 1/2 m v²
So
Work done by all forces = Change in kinetic energy
m g h = 1/2 m v² - 0
v² = 2 g h
Answer:
Distance = 16.9 m
Explanation:
We are given;
Power; P = 70 W
Intensity; I = 0.0195 W/m²
Now, for a spherical sound wave, the intensity in the radial direction is expressed as a function of distance r from the center of the sphere and is given by the expression;
I = Power/Unit area = P/(4πr²)
where;
P is the sound power
r is the distance.
Thus;
Making r the subject, we have;
r² = P/4πI
r = √(P/4πI)
r = √(70/(4π*0.0195))
r = √285.6627
r = 16.9 m
Answer:
magnification is - 159
objective distance is 3.85 cm
Explanation:
Given data
focal length f1 = 1.40 cm
focal length f2 = 2.20 cm
separated d = 19.6 cm
to find out
angular magnification and How far from the objective
solution
we know magnification formula that is
magnification = ( - L / f1 ) (D/f2)
here D = 25 cm put all value
magnification = ( - 19.6 / 1.40 ) (25/2.20)
magnification = - 159
and
now we apply lens formula
i/f = 1/q + 1/p
p = f2 = 2.20
so
q = f2 p / p -f2
q = 1.4(2.20) / ( 2.2 - 1.4 )
q = 3.85 cm
so objective distance is 3.85 cm