To solve this problem we will use the basic concept given by the Volume of a sphere with which the atom approaches. The fraction in percentage terms would be given by the division of the total volume of the nucleus by that of the volume of the atom, that is,
Therefore the percent of the atom's volume is occupied by mass is
Speed = (wavelength) x (frequency
Speed = (.020 m) x (5 / sec)
Speed = 0.1 m/s
Explanation:
The nucleus of an atom is dense because it contains more of particles in a very little space.
The nucleus is the center of an atom made up of the protons and neutrons.
Atomic nucleus is very small compared to the size of the atom.
Density is function of mass and volume.
Mass is the amount of matter in a substance.
Volume is the space occupied by a substance.
The more the mass the more the density.
Since protons and neutron are massive bodies occupying a small space, they make the nucleus very dense.
learn more:
Density brainly.com/question/5055270
#learnwithBrainly
Answer:
a) the one with a lower orbit b) the one with a higher orbit
Explanation:
Let's consider orbital mechanics. To get an object in orbit, we need it to fall to earth parallel to the earth's surface. To understand it easily imagine a projectile thrown horizontally further and further away, at one point, the projectile hits the cannon from behind. Considering there is no wind resistance, that would be a projecile in orbit.
In other words, the circular orbits of some objects around a massive body are due to the equality between centrifugal acceleration and gravity acceleration.
.
so the velocity is
where "G" is the gravitational constant, "M" the mass of the massive body and "r" the distance between the object and the center of gravity of mass M. As you can note, if "r" increase, "v" decrease.
The orbital period of any object in orbit is
where "a" is length of semi-major axis (a = r in circular orbits). So if "r" increase, "T" increase.