Velocity - <span><span>the speed of something in a given direction
Speed - </span></span><span>rapidity in moving, going, traveling, proceeding, or performing; swiftness; <span>celerity
Velocity is the speed in a certain direction, whereas speed is just the rate of fastness.
Does that make sense?
</span></span>
Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>
The potential energy of the spring is 6.75 J
The elastic potential energy stored in the spring is given by the equation:

where;
k is the spring constant
x is the compression/stretching of the string
In this problem, we have the spring as follows:
k = 150 N/m is the spring constant
x = 0.3 m is the compression
Substituting in the equation, we get


Therefore. the elastic potential energy stored in the spring is 6.75J .
Learn more about potential energy here:
brainly.com/question/10770261
#SPJ4
Answer:
I think that the answer might be d
Answer:
It will take 8.80 sec to fall from the building
Explanation:
We have given height pf the state building h = 380 m
Initial velocity will be 0 m /sec
So u = 0 m/sec
Acceleration due to gravity 
We have to find the fall time
According to second equation of motion 
So 

t = 8.80 sec