Answer:
The speed of sound, in m/s, through air at this temperature is 343.5 m/s
Explanation:
Given;
distance traveled by sound, d = 1,687.5 meters
time taken for the sound to travel, t = 5 seconds
air temperature, θ = 10°C
Speed of sound = distance traveled by sound / time taken for the sound to travel
Speed of sound = d / t
= 1687.5 m / 5 s
= 337.5 m/s
Speed of sound at the given temperature is calculated as;
c = 337.5 + 0.6θ
c = 337.5 + 0.6 x 10
c = 337.5 + 6
c = 343.5 m/s
Therefore, the speed of sound, in m/s, through air at this temperature is 343.5 m/s
Answer:
1.2 A
Explanation:
From the diagram attached, The three resistors are parallel because the each ends of the resistors are connected together. Since they are in parallel, the voltage across each resistor is the same. The voltage source connected in parallel to the resistors is 60 V. Therefore the voltage across the 50 Ω resistor is 60 V. Using ohm law:
Voltage (V) = Current (I) × Resistance (R)
V = IR
I = V/R
I = 60 V/ 50 Ω
I = 1.2 A
The current in the 50 Ω resistor is 1.2 A
Answer:
For number 4: A vector pointing to the right with a magnitude of 2.0
Explanation:
Very simple- just subtract 6-2
I am not sure how to do #2- sorry!
Answer:
The horizontal component of displacement is d' = 1422.7 m
Explanation:
Given data,
The distance covered by the truck, d = 1430 m
The angle formed with the horizontal, Ф = 5.76°
The displacement is a vector quantity.
The horizontal component of displacement is given by,
d' = d cos Ф
= 1430 cos 5.76°
= 1422.7 m
Hence, the horizontal component of displacement is d' = 1422.7 m
Answer:
what time you thinking. about coming down to take a break and ok I will get to?. that was a right answer?