German physicist Albert Betz (in 1919) demonstrated that the highest efficiency you can achieve with a wind turbine is around 59%
We would have to analyze the design of an specific turbine to determine its efficiency, however it is unlikely to achieve 50% , as todays turbines have an average efficiency in the 20-35%
The answer would be around 25%
Operant conditioning, sometimes called <em>instrumental learning</em>, was first extensively studied by Edward L. Thorndike, who observed the behavior of cats trying to escape from home-made puzzle boxes.
Hope this helps!
Winds are named based on which compass direction the wind is blowing. For example some common ones are NE or N or SE or SW. NE stands for Northeast, N for North, SE for South East and SW for Southwest.
A free-falling object is an object moving under the effect of gravitational forces alone
The correct option to select for the True or False question is False
The reason the above selected option is correct is as follows:
According to Newton's second law of motion, we have;
Force = Mass × Acceleration
The force of gravity is
Where;
m = The mass of the object
∴ The force acting on an object in free fall, = m × g
Therefore the acceleration of an object in free fall is the constant acceleration due to gravity, and it therefore, does not change with time
The correct option for the question, acceleration of a free-falling object in a frictionless environment increases as a function of time is <u>False</u>
<u></u>
Learn more about object in free fall here:
brainly.com/question/13712424
brainly.com/question/11698474
Answer:
B. Steam burns the skin worse than hot water because the latent heat of vaporization is released as well.
Explanation:
It is given that both steam and the boiling water when in contact with the skin cools down from 100 to 34 degrees Celsius.
For any substance of mass m, the heat required to change the temperature by is (S.I. unit = Joules).
where C, the specific heat capacity is the same and a constant for both the condensed steam and the boiling water.
But, there is a "hidden" energy (heat) released by the steam called latent heat
(given by mL, L = specific latent heat) which allows the phase transition (gas to liquid). While both of them are at the same temperature, their energy (heat) is different, which is why steam causes burns worse than boiling water