If there wasn't any battery before, then there was no current
in the circuit before, and there IS one now. That's just about
the greatest change possible.
If there WAS a battery there before and you added another one
in series with it, then there are a few different possibilities for the
effect on the current in the circuit:
-- If the new battery has the same voltage as the original one,
AND you connect the new one so that they're both in the same
direction, then the current in the circuit will become double the
original current (twice as much as it was before).
-- If the new battery has the same voltage as the original one, AND
you connect the new one so that they're in opposite directions, then
the two batteries cancel each other, the total voltage becomes zero,
and the current in the circuit completely disappears.
-- If the voltage of the two batteries is different AND you connect
the new one so that they're both in the same direction, then the
current in the circuit increases, by a factor of
(sum of the two battery voltages)
divided by
(voltage of the original battery alone).
-- If the voltage of the two batteries is different AND you
connect the new one so that they're in opposite directions,
then the current in the circuit decreases, by a factor of
(difference of the two battery voltages)
divided by
(voltage of the original battery alone)
and the current flows in the direction of whichever battery has
the greater voltage. If the new battery has greater voltage than
the original one alone, then the current reverses, and flows in
the opposite direction.
I think that covers all the possibilities.
Answer:
Increasing the mass and decreasing the distance between the two objects.
Explanation:
An increase in mass will cause them to have a stronger pull or gravity. A decrease of distance will make it easier for the objects to fall into each other because they would be further into the other objects area of influence.
Eh not really sure bout this one
Answer:
Following are the solution to the given question:
Explanation:
The input linear polarisation was shown at an angle of
. It's a very popular use of a half-wave plate. In particular, consider the case
, at which the angle of rotation is
. HWP thereby provides a great way to turn, for instance, a linear polarised light that swings horizontally to polarise vertically. Illustration of action on event circularly polarized light of the half-wave platform. Customarily it is the slow axis of HWP that corresponds to either the rotation. Note that perhaps the vector of polarization is "double-headed," i.e., the electromagnetic current swinging back and forward in time. Therefore the turning angle could be referred to as the rapid axis to reach the same result. Please find the attached file.