Answer:
735 J/kg/C
Explanation:
Q = mcT
943 = (0.447)( c )(2.87)
1.28289c = 943
c = <u>7</u><u>3</u><u>5</u><u> </u><u>J</u><u>/</u><u>k</u><u>g</u><u>/</u><u>C</u><u> </u><u>(</u><u>3</u><u> </u><u>s</u><u>f</u><u>)</u>
Answer:
(a) T = 0.015 N
(b) M = 1.53 x 10⁻³ kg = 1.53 g
Explanation:
(a) T = 0.015 N
First, we will find the speed of waves:

where,
v = speed of wave = ?
f = frequency = 120 Hz
λ = wavelength = 6 cm = 0.06 m
Therefore,
v = (120 Hz)(0.06 m)
v = 7.2 m/s
Now, we will find the linear mass density of the coil:

where,
μ = linear mass density = ?
m = mass = 1.45 g = 1.45 x 10⁻³ kg
l = length = 5 m
Thereforre,

Now, for the tension we use the formula:

<u>T = 0.015 N</u>
<u></u>
(b)
The mass to be hung is:

<u>M = 1.53 x 10⁻³ kg = 1.53 g</u>
Answer:
A. If two objects collide, each object exerts a force in the same direction as the other.
Explanation:
Answer:
- The distance between the charges is 5,335.026 m
Explanation:
To obtain the forces between the particles, we can use Coulomb's Law in scalar form, this is, the force between the particles will be:

where k is Coulomb's constant,
and
are the charges and d is the distance between the charges.
Working a little the equation, we can take:


And this equation will give us the distance between the charges. Taking the values of the problem

(the force has a minus sign, as its attractive)




And this is the distance between the charges.