1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
3 years ago
12

An illustration of the major tectonic plates is provided below.

Physics
2 answers:
Julli [10]3 years ago
5 0

Answer:

Plate A

Explanation: It has the continent of North America inside of it.

Luden [163]3 years ago
5 0

Answer:

its A

Explanation:Promise I did this rn and got it right

You might be interested in
What was the initial velocity of a robot that took 5 m to get to final velocity of 19 m/s at a rate of 3 m/s/s?
Aleks [24]

Answer:

4m/s

v=u+at

19=u+3*5

u=4m/s

5 0
3 years ago
Hello, What is a four letter word the second letter is a O, and the hint is, “A period or measurement of time”
erma4kov [3.2K]
Hello. Try "hour". :)
6 0
3 years ago
Read 2 more answers
Light travels as a(n).<br> wave.<br> mechanical<br> compression<br> O electromagnetic
umka2103 [35]
Light travels as a wave
8 0
3 years ago
A solar cell generates a potential difference of 0.25 V when a 550 Ω resistor is connected across it, and a potential difference
Andre45 [30]

a) 400 \Omega

b) 0.43 V

c) 0.44 %

Explanation:

a)

For a battery with internal resistance, the relationship between emf of the battery and the terminal voltage (the voltage provided) is

V=E-Ir (1)

where

V is the terminal voltage

E is the emf of the battery

I is the current

r is the internal resistance

In this problem, we have two situations:

1) when R_1=550 \Omega, V_1=0.25 V

Using Ohm's Law, the current is:

I_1=\frac{V_1}{R_1}=\frac{0.25}{550}=4.5\cdot 10^{-4} A

2) when R_2=1000 \Omega, V_2=0.31 V

Using Ohm's Law, the current is:

I_2=\frac{V_2}{R_2}=\frac{0.31}{1000}=3.1\cdot 10^{-4} A

Now we can rewrite eq.(1) in two forms:

V_1 = E-I_1 r

V_2=E-I_2 r

And we can solve this system of equations to find r, the internal resistance. We do it by substracting eq.(2) from eq(1), we find:

V_1-V_2=r(I_2-I_1)\\r=\frac{V_1-V_2}{I_2-I_1}=\frac{0.25-0.31}{3.1\cdot 10^{-4}-4.5\cdot 10^{-4}}=400 \Omega

b)

To find the electromotive force (emf) of the solar cell, we simply use the equation used in part a)

V=E-Ir

where

V is the terminal voltage

E is the emf of the battery

I is the current

r is the internal resistance

Using the first set of data,

V=0.25 V is the voltage

I=4.5\cdot 10^{-4}A is the current

r=400\Omega is the internal resistance

Solving for E,

E=V+Ir=0.25+(4.5\cdot 10^{-4})(400)=0.43 V

c)

In this part, we are told that the area of the cell is

A=4.0 cm^2

While the intensity of incoming radiation (the energy received per unit area) is

Int.=5.5 mW/cm^2

This means that the power of the incoming radiation is:

P=Int.\cdot A=(5.5)(4.0)=22 mW = 0.022 W

This is the power in input to the resistor.

The power in output to the resistor can be found by using

P'=I^2R

where:

R=1000 \Omega is the resistance of the resistor

I=3.1\cdot 10^{-4} A is the current on the resistor (found in part A)

Susbtituting,

P'=(3.1\cdot 10^{-4})^2(1000)=9.61\cdot 10^{-5} W

Therefore, the efficiency of the cell in converting light energy to thermal energy is:

\epsilon = \frac{P'}{P}\cdot 100 = \frac{9.6\cdot 10^{-5}}{0.022}=0.0044\cdot 100 = 0.44\%

7 0
3 years ago
Plz help ASAP I'll mark as brainliest ​
gogolik [260]

Hi there!

1.

Hooke's law states that:

F = -kx

k = Spring constant (N/m)

x = DISPLACEMENT from equilibrium (m)

Essentially, the force of a spring is PROPORTIONAL to its spring constant and its displacement from its equilibrium point.

2.

The force of the spring (T) is not proportional to the spring's length (l), but rather its DISPLACEMENT from its equilibrium length. (Δl)

3.

The equilibrium length is where the force of the spring (T) = 0N. Looking at the graph, the line intersects this value at l = 30cm.

4.

We can begin by looking at the given graph.

When the spring force = 4N, the total length of the spring is 35 cm.

Now, the EQUILIBRIUM length is 30 cm, so the total elongation is:

35 - 30 = 5 cm.

5.1.

If the spring elongates by 10 cm, the total length of the spring is:

30 + 10 = 40 cm

According to the graph, a length of 40 cm corresponds to a force of 8N.

5.2.

We can solve for the weight of the ball using the following:

W (weight) = m (mass) · acceleration due to gravity (10N/kg)

Using a summation of forces:

∑F = T - W

The elongation that we are solving for occurs at the equilibrium point (net force = 0 N), so:

0 = T - W

T = W = 8 N

5.3.

0 = T - Mg

T = Mg

Use the prior value of T and gravity to solve:

8 = 10M

m = 0.8 kg

8 0
3 years ago
Other questions:
  • Your pencil is 11 cm long . How long is it in millimeters?
    7·1 answer
  • (b) The speed of the vehicle is written as 90 km/h. State the speed in SI unit. Show your working in the space below.
    5·2 answers
  • 20. Sterling Archer, despite failing repeatedly at pole-vaulting, is determined to master the skill. He is holding a vaulting po
    11·1 answer
  • A plane progressive wave is represented by the equation y =2sin (2000πt- 0.5x) the symbols have their usual meanings. what is th
    9·1 answer
  • What would be a good indicator of the solubility of a substance in a solute? A. whether the substance is a solid a liquid or a g
    14·1 answer
  • An unstretched spring has a length of 10. centimeters. When the spring is stretched by a force of 16 newtons, its length is incr
    13·1 answer
  • A heat engine is designed to do work. This is possible only if certain relationships between the heats and temperatures at the i
    10·2 answers
  • Two current-carrying wires are exactly parallel to one another and both carry 2.5A of current. The two wires are separated by a
    15·1 answer
  • Explain how heat is related to temperature and thermal energy...
    13·1 answer
  • A negative charge of 4.0 x 10 C and a positive charge of 7.0 x 10 C are separated by 0.15 m. What is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!