Answer
given,
Two solenoids A and B
Number of turn
Na = 430 turns Nb = 610 turns
Current = 2.80 A
Average flux through A = 300 μWb
Average of flux through B = 90.0 μ
Wb
a) 


b) inductance of A



c) magnitude of the emf




This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute
Conductor because it creates heat.
The answer is D I’m not really sure yet
Answer:
All the given options will result in an induced emf in the loop.
Explanation:
The induced emf in a conductor is directly proportional to the rate of change of flux.

where;
A is the area of the loop
B is the strength of the magnetic field
θ is the angle between the loop and the magnetic field
<em>Considering option </em><em>A</em>, moving the loop outside the magnetic field will change the strength of the magnetic field and consequently result in an induced emf.
<em>Considering option </em><em>B</em>, a change in diameter of the loop, will cause a change in the magnetic flux and in turn result in an induced emf.
Option C has a similar effect with option A, thus both will result in an induced emf.
Finally, <em>considering option</em> D, spinning the loop such that its axis does not consistently line up with the magnetic field direction will<em> </em>change the angle<em> </em>between the loop and the magnetic field. This effect will also result in an induced emf.
Therefore, all the given options will result in an induced emf in the loop.