The magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
To find the answer, we need to know about the magnetic field inside the solenoid.
<h3>What's the expression of magnetic field inside a solenoid?</h3>
- Mathematically, the expression of magnetic field inside the solenoid= μ₀×n×I
- n = no. of turns per unit length and I = current through the solenoid
<h3>What's is the magnetic field inside the solenoid here?</h3>
- Here, n = 290/32cm or 290/0.32 = 906
I= 0.3 A
- So, Magnetic field= 4π×10^(-7)×906×0.3 = 3.4×10^(-4) T.
Thus, we can conclude that the magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
Learn more about the magnetic field inside the solenoid here:
brainly.com/question/22814970
#SPJ4
Answer:
13,750 N
Yes
Explanation:
Given:
v₀ = 90 km/h = 25 m/s
v = 0 m/s
t = 4 s
Find: a and Δx
a = Δv / Δt
a = (0 m/s − 25 m/s) / (4 s)
a = -6.25 m/s²
F = ma
F = (2200 kg) (-6.25 m/s²)
F = -13,750 N
Δx = ½ (v + v₀) t
Δx = ½ (0 m/s + 25 m/s) (4 s)
Δx = 50 m
Answer:
the answer would be "using more heat" btw
Explanation:
<span>A sheet of copper could cause the object to lose the most amount of heat. Copper is an essential element and a good conductor of heat. Heat can transfer from one end of a piece of copper to the other end.</span>