Question:
If you push a bowling ball and a golf ball with an equal force what will happen
Answer:
B)
Explanation:
Larger than the force used to push the object that has less mass. A golf ball and a bowling ball are moving at the same velocity. When gravity and air resistance are equal, the object has drawn its terminal velocity.
Answer:
4 m/s or 4 meters per second.
Explanation:
In order to calculate the speed of wave, you multiply the wavelength in meters and the frequency of the Wave in Hertz. 2 times 2 equals 4. The wave speed is always in m/s considering that the wavelength is also in meters.
Answer:
There are many topics related to physics such as :
Kinematics
Dynamics
Light
Sound
Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
Answer:
The farther star will appear 4 times fainter than the star that is near to the observer.
Explanation:
Since it is given that the luminosity of the 2 stars is same thus they radiate the same energy per unit time
Consider a spherical wave front of energy 'E' that leaves both the stars (Both radiate 'E' as they have same luminosity)
This Energy is spread over the whole surface area of sphere Thus when the wave front is at a distance 'r' the energy per unit surface area is given by

For the star that is twice away from the earth the distance is '2r' thus we will receive an energy given by
Hence we sense it as 4 times fainter than the nearer star.