Answer:
B) 18.5 m/
s west
Explanation:
Scalar quantity has MAGNITUDE only
Vector quantity has MAGNITUDE and DIRECTION
Hope this is correct and helpful
HAVE A GOOD DAY!
The apparent magnitude scale is a classification scheme which is based on the brightness of stars. The range of brightness values is from 1 to 6.
The stars which are the most brightest are ranked as number 1 and also called first magnitude stars, stars which are little dimmer than number 1 are ranked as number 2 and also called second magnitude stars. Similarly the most faintest stars are ranked number 6 and also called as the sixth magnitude stars.
As the gas cools down, particle movement slows down with it, and so does the temperature of the gas. This is because the more heat or thermal energy a gas has, the faster the particles move. This is why absolute zero, or 0 degrees Kelvin is defined as zero particle movement, because it has zero energy.
Hope this helps
Answer:
D reliability
Explanation:
I think am collect but if you recognize that am wrong just collect me then
Answer:
block K = 29.39 J and spring #1 Ke = 360 J
Explanation:
In this problem we have that the elastic energy of the spring becomes part kinetic energy and the part in work against the force of friction, so, to use the law of conservation of energy, the decrease in energy is the rubbing force work
= Ef - E₀
Let's look for the energies
Initial
E₀ = Ke = ½ k₁ x₁²
Final, this is just before starting to compress the spring
Ef = Ke = ½ m v²
The work of the rubbing force is
= -fr x
Let's write Newton's second law the y axis
N-W = 0
N = W
fr = μ N
fr = μ mg
Let's replace
-μ mg x = ½ m v² - ½ k₁ x₁²
v² = 2/m (½ k₁ x1₁² -μ mg x)
v² = 2/6 (½ 2000 0.6²2 - 0.5 6 9.8 1) = 1/3 (360 - 29.4)
v = 3.13 m / s
With this value we calculate the energy of the block
K = ½ m v²
K = ½ 6 3.13²
K = 29.39 J
Calculate eenrgy of the spring ke 1
Ke = ½ k₁ x₁²
Ke = ½ 2000 0.60²
Ke = 360 J