1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
2 years ago
13

A boy throws a baseball onto a roof and it rolls back down and off the roof with a speed of 3.05 m/s. If the roof is pitched at

40.0° below the horizon and the roof edge is 4.50 m above the ground, find the time the baseball spends in the air and the horizontal distance from the roof edge to the point where the baseball lands on the ground.
Physics
1 answer:
vekshin12 years ago
7 0

1) Time in the air: 0.78 s

The motion of the ball is a projectile motion, which consists of two independent motions:

- A horizontal motion with constant horizontal velocity

- A vertical motion with constant downward acceleration of

g=-9.8 m/s^2 (acceleration of gravity)

The initial vertical velocity is

u_y = u sin \theta = (3.05)(sin(-40^{\circ}))=-1.96 m/s

where the negative sign means the direction is downward.

The vertical position of the ball is given by

y(t) = h + u_y t + \frac{1}{2}gt^2

where

h = 4.50 m is the initial heigth of the ball when it starts falling down

The ball reaches the ground when y = 0, so we have:

0 = 4.50 -1.96t-4.9t^2

This is a second-order equation; solving for t, we get

t = -1.18 s

t = 0.78 s

We discard the negative solution since it has no physical meaning, so we can say that the ball spent 0.78 s in the air.

2) Horizontal distance: 1.83 m

For this second part of the problem, we just have to consider the horizontal motion of the ball.

As we said previously, the motion of the ball along the horizontal direction is a uniform motion with constant velocity, which is given by

v_x = u cos \theta = (3.05)(cos (-40.0^{\circ}))=2.34 m/s

where u = 3.05 m/s is the initial speed and \theta the angle of projection.

For a uniform motion, we can use the following relationship between distance covered and velocity:

d=v_x t

and substituting t = 0.78 s, we find the total distance travelled along the horizontal direction by the ball before reaching the ground:

d=(2.34)(0.78)=1.83 m

You might be interested in
Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc
lisov135 [29]

Answer:

a) The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b)The mass per unit length \lambdaλ for a copper cable is 0.757kg/m

c)The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d)The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Explanation:

The expression for electric field of conductor is,

E =  \frac{V}{L}

The general equation of voltage is,

V = iR

The expression for current density in term of electric field is,

J = \frac{E}{p}

Substitute (V/L)  for E in the above equation of current density.

J = \frac{V}{pL} ------(1)

Substitute iR for V in equation (1)

J = \frac{iR}{pL} ------(2)

Substitute 1.69 × 10⁸ Ω .m for p

50A for i

0.200Ω.km⁻¹ for (R/L) in eqn (2)

J = \frac{(50) (0.200\times 10^-^3) }{1.69 \times 10^-^8 } \\\\= 5.91 \times 10^5A.m^-^2

The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b) The expression for resistivity of the conductor is,

p = \frac{RA}{L}

A = \frac{pL}{R}

The expression for mass density of copper is,

m = dV

where, V is the density of the copper.

Substitute AL for V in equation of the mass density of copper.

m=d(AL)

m/L = dA

λ is use for (m/L)

substitute,

pL/R for A  and λ is use for (m/L) in the eqn above

\lambda = d\frac{p}{\frac{R}{L} } ------(3)

Substitute 0.200Ω.km⁻¹ for (R/L)

8960kgm⁻³  for d and 1.69 × 10⁸ Ω .m

\lambda = (8960) \frac{(1.69 \times 10^-^8 }{0.200\times 10^-^3} \\\\= 0.757kg.m^-^1

c) Using the equation (2) current density for aluminum cable is,

J = \frac{iR}{pL}

p is the resistivity of the aluminum cable.

Substitute 2.82 × 10⁻⁸Ω.m for p ,

50A for i and 0.200Ω.km⁻¹ for (R/L)

J = \frac{(50)(0.200\times10^-^3) }{2.89\times 10^-^8} \\\\= 3.5 \times10^5A/m^2

The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d) Using the equation (3) mass per unit length for aluminum cable is,

\lambda = d\frac{p}{\frac{R}{L} }

p is the resistivity and is the density of the aluminum cable.

Substitute 0.200Ω.km⁻¹ for (R/L), 2700 for d and 2.82 × 10⁻⁸Ω.m for p

\lambda = (2700) \frac{(2.82 \times 10^-^8) }{(0.200 \times 10^-^3) } \\\\= 0.380kg/m

The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

7 0
3 years ago
Read 2 more answers
How much force should a mother exert to lift a 5.0-kg child​
andrew11 [14]

Answer:

F = 49N

Explanation:

F = mg

F = 5kg × 9.8m/s^2

F = 49kg.m/s^2 = 49N

8 0
3 years ago
What law states force is dependent on the mass and acceleration of an object
UNO [17]

Answer:

Newton's second law of motion

Explanation:

Newton's second law of motion can be stated  

The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.

in another form,

Force = mass * acceleration

5 0
3 years ago
Consider the image above. Vi = the initial velocity and Vf = the final velocity. Is there acceleration? Explain your answer.
lutik1710 [3]
<span><span>Velocity is a vector, and the initial and final ones are in opposite directions.
There must have been acceleration in order to change the direction of motion.</span>

A) No. The initial and final velocities are the same.
This is all wrong, and not the correct choice.
It's "Yes", and the initial and final velocities are NOT the same.

B) Yes. The ball had to slow down in order to change direction.
This is poor, and not the correct choice.
The "Yes" is correct, but the explanation is bad.
Acceleration does NOT require any change in speed.

C) No. Acceleration is the change in velocity. The ball's velocity is constant.
This is all wrong, and not the correct choice.
It's "Yes", there IS acceleration, and the ball's velocity is NOT constant.

D) Yes. Even though the initial and final velocities are the same, there is a change in direction for the ball.
This choice is misleading too.
The "Yes" is correct ... there IS acceleration.
The change in direction is the reason.
The initial and final velocities are NOT the same.  Only the speeds are.
</span>
3 0
3 years ago
Read 2 more answers
Motivational novels for students
wolverine [178]

i recommend Biography of Malala Yousafzai

I have learned her biography

that really motivated me

4 0
3 years ago
Other questions:
  • The Chevy Corvette Z06 is claimed to accelerate from a standing start to 60 miles per hour in 3 seconds. Estimate its accelerati
    8·1 answer
  • "The work done on an ideal gas system in an isothermal process is -400 J. What is the change in internal (thermal) energy of the
    12·1 answer
  • 1. A giri rides her bike at 15 m/s for 20 s. How far does she travel in that time?
    6·2 answers
  • List how many significant figures the numbers contain. A. 205 cm. B. .00004 cm. C. 20 cm. D. 20. Cm.
    12·1 answer
  • NEED ANSWER ASAP!!!
    14·1 answer
  • Which refers to an object’s resistance to any change in its motion? force acceleration gravity inertia
    14·2 answers
  • Comon help me out here
    14·1 answer
  • What colors of light are absorbed when white light falls on a green object?
    11·2 answers
  • 11. A collection of a small group of factors that are related is known as a(n)
    9·1 answer
  • If a maserati. with a belocity of 6 m/s E, accelerates at a rate of 85 m/s^2 for 5 seconds, what will its velocity be?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!