Answer:
The specific heat capacity of the unknown metal is 0.223 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case, you know:
- Q= 418.6 J
- c= ?
- m= 75 g
- ΔT= 25 C
Replacing:
418.6 J= c* 75 g* 25 C
Solving:

c= 0.223 
<u><em>The specific heat capacity of the unknown metal is 0.223 </em></u>
<u><em></em></u>
<u><em>
</em></u>
<u><em></em></u>
Answer:
1 and 4
Explanation:
in both pictures the temperature is cooling down
Answer:
The physical properties of a solution are different from those of the pure solvent. ... Colligative properties are those physical properties of solutions of nonvolatile solutes that depend only on the number of particles present in a given amount of solution, not on the nature of those particles.
We have to know the molarity of solution obtained when 5.71 g of Na₂CO₃.10 H₂O is dissolved in water and made up to 250 cm³ solution.
The molarity of solution obtained when 5.71 g of sodium carbonate-10-water (Na₂CO₃.10 H₂O) is dissolved in water and made up to 250.0 cm^3 solutionis: (A) 0.08 mol dm⁻³
The molarit y of solution means the number of moles of solute present in one litre of solution. Here solute is Na₂CO₃.10 H₂O and solvent is water. Volume of solution is 250 cm³.
Molar mass of Na₂CO₃.10 H₂O is 286 grams which means mass of one mole of Na₂CO₃.10 H₂O is 286 grams.
5.71 grams of Na₂CO₃.10 H₂O is equal to
= 0.0199 moles of Na₂CO₃.10 H₂O. So, 0.0199 moles of Na₂CO₃.10 H₂O present in 250 cm³ volume of solution.
Hence, number of moles of Na₂CO₃.10 H₂O present in one litre (equal to 1000 cm³) of solution is
= 0.0796 moles. So, the molarity of the solution is 0.0796 mol/dm³ ≅ 0.08 mol/dm³
I am pretty sure the answer is 1.5*10^25