Answer:
2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.
12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution
Explanation:
First, by definition of solubility, in 100 g of water there are 0.0016 g of CaF₂. So, to know how many moles are 0.0016 g, you must know the molar mass of the compound. For that you know:
- Ca: 40 g/mole
- F: 19 g/mole
So the molar mass of CaF₂ is:
CaF₂= 40 g/mole + 2*19 g/mole= 78 g/mole
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 0.0016 grams of the compound how many moles are there?
moles=2.05*10⁻⁵
<u><em>2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.</em></u>
Now, to answer the following question, you can apply the following rule of three: if by definition of density in 1 mL there is 1 g of CaF₂, in 1000 mL (where 1L = 1000mL) how much mass of the compound is there?
mass of CaF₂= 1000 g
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 1000 grams of the compound how many moles are there?
moles=12.82
<u><em>12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution</em></u>
The formula of mechanical advantage in this situation is:
MA = Input Force ÷ Output Force
The input force is the 30N applied to a screwdriver while the output force is the 75N force to the lid.
So,
MA = 30N/75N
MA = 0.40
Hence the mechanical advantage of the screwdriver is 0.40.
.513mol x (102g/1mol)
Essentially, this is .513 x 102
Which equals: 52.326
But because you can only have 3 significant figures, your answer is:
52.3 grams
I hope this Helps!
Answer:
D
Explanation:
Because if I said its 35 degrees outside that has nothing to do with climate maybe if I said its usually 35 degrees in the month of December but just saying what temperature it doesn't tell you anything about climate
Well, the definition of climate is the weather conditions prevailing in an area in general or over a long period so I don't really know
So maybe it is d