Answer: C
Explanation:
The one closest to the atomic center, there is a single 1s orbital that can hold 2 electrons. At the next energy level, there are four orbitals.
Answer:
Molality = 8.57 m
Explanation:
Given data:
Molarity of solution = 5.73 M
density = 0.9327 g/mL
Molality of solution = ?
Solution:
Molality = moles of solute / kg of solvent.
Kg of solvent:
Mass of 1 L solution = density× volume
Mass of 1 L solution = 0.9327 g/mL × 1000 mL
Mass of 1 L solution = 932.7 g
Mass of solute:
Mass of 1 L = number of moles × molar mass
Mass = 5.73 mol × 46.068 g/mol
Mass = 263.97 g
Mass of solvent:
Mass of solvent = mass of solution - mass of solute
Mass of solvent = 932.7 g - 263.97 g
Mass of solvent = 668.73 g
In Kg = 668.73 /1000 = 0.6687 Kg
Molality:
Molality = number of moles of solute / mass of solvent in Kg
Molality = 5.73 mol / 0.6687 Kg
Molality = 8.57 m
The molarity of the stock Mn²⁺ ions is 0.0288 M
Based on the dilution formula;
- The molarity of A is 0.00144 M
- The molarity of B is 0.0000576 M
- The molarity of C is 0.000001152 M
<h3>What is the molarity of a solution?</h3>
The molarity of a solution is the number of moles of a solute dissolved in a given volume of solution in liters.
- Molarity = number of moles/volume
The molarity of the stock solution is:
moles of Mn²⁺ ions = mass / molar mass
molar mass of Mn²⁺ ions = 55.0 g/mol
moles of Mn²⁺ ions = 1.584 / 55
moles of Mn²⁺ ions = 0.0288 moles
molarity of Mn²⁺ ions = 0.0288 / 1
molarity of Mn²⁺ ions = 0.0288 M
The dilution formula is used to determine the molarities of A, B, and C.
C₁V₁ = C₂V₂
C₂ = C₁V₁ / V₂
Where;
- C₁ = initial molarity
- V₁ = initial volume
- C₂ = final molarity
- V₂ = final volume
Molarity of A = 50 * 0.0288 / 1000
Molarity of A = 0.00144 M
Molarity of B = 10 * 0.00144 / 250
Molarity of B = 0.0000576 M
Molarity of C = 10 * 0.0000576 / 500
Molarity of C = 0.000001152 M
Learn more about molarity at: brainly.com/question/17138838
#SPJ1
Answer:
The answer to the first question is B) left and the answer to the second question is A) right.
Explanation:
To solve these questions, we must remember that if a change is made to the system, the system will work to reduce that change. In these problems, if we add one reactant/product, the system will shift to use this compound and re-establish equilibrium.
For the first question, H2 is a product. If we add H2 to the system, the equilibrium will shift to the left to decrease the concentration of H2. The second question is the opposite since we are adding CH4 (a reactant). When CH4 is added, the system shifts to the right to decrease the concentration of CH4.
For more information about this principle, check out these other questions:
brainly.com/question/2943338
brainly.com/question/3384381