Because acceleration is constant, the acceleration of the car at any time is the same as its average acceleration over the duration. So

Now, we have that

so we end up with a distance traveled of


a₀). You know ...
-- the object is dropped from 5 meters
above the pavement;
-- it falls for 0.83 second.
a₁). Without being told, you assume ...
-- there is no air anyplace where the marshmallow travels,
so it free-falls, with no air resistance;
-- the event is happening on Earth,
where the acceleration of gravity is 9.81 m/s² .
b). You need to find how much LESS than 5 meters
the marshmallow falls in 0.83 second.
c). You can use whatever equations you like.
I'm going to use the equation for the distance an object falls in
' T ' seconds, in a place where the acceleration of gravity is ' G '.
d). To see how this all goes together for the solution, keep reading:
The distance that an object falls in ' T ' seconds
when it's dropped from rest is
(1/2 G) x (T²) .
On Earth, ' G ' is roughly 9.81 m/s², so in 0.83 seconds,
such an object would fall
(9.81 / 2) x (0.83)² = 3.38 meters .
It dropped from 5 meters above the pavement, but it
only fell 3.38 meters before something stopped it.
So it must have hit something that was
(5.00 - 3.38) = 1.62 meters
above the pavement. That's where the head of the unsuspecting
person was as he innocently walked by and got clobbered.
Answer:
Explanation:
liquids have definite volume
liquids do not have definite shape. The take the shape of the container in which they are kept.
gases do not have definite volume.
gases do not have definite shape. They take the shape of the container in which they are kept.
Hope this helps
plz mark as barinliest!!!!!!
Stay safe!
Answer:
1.0×10³ N
Explanation:
μs is the static coefficient of friction. That's the friction that acts on a stationary (non-moving) object when being pushed or pulled.
μk is the kinetic coefficient of friction. That's the friction that acts on a moving object.
To budge the pig (while it's still stationary), we need to overcome the static friction.
F = N μs
For a non-moving object on level ground, the normal force N equals the weight.
F = mg μs
Given m = 130 kg and μs = 0.80:
F = (130 kg) (9.8 m/s²) (0.80)
F = 1019.2 N
Rounded to two significant figures, the force needed to budge the pig is 1.0×10³ N.
Answer:
Explanation:
From the question we are told that
The initial velocity is 
The time taken is 
The charge to mass ratio is 
Generally the acceleration is mathematically evaluated as

substituting values

The electric field is mathematical represented as

substituting values

