Answer:20
Explanation: i konw this stuff
Answer:
The right response will be "450 volts".
Explanation:
The given values are:
R1 = 4.00 cm
R2 = 6.00 cm
q1 = +6.00 nC
q2 = −9.00 nC
As we know,
The potential difference between the two shell's difference will be:
⇒ ![\Delta V=K[(\frac{q1}{R1}+\frac{q2}{R2})-(\frac{q1}{R1} +(\frac{q2}{R2}))]](https://tex.z-dn.net/?f=%5CDelta%20V%3DK%5B%28%5Cfrac%7Bq1%7D%7BR1%7D%2B%5Cfrac%7Bq2%7D%7BR2%7D%29-%28%5Cfrac%7Bq1%7D%7BR1%7D%20%2B%28%5Cfrac%7Bq2%7D%7BR2%7D%29%29%5D)
![=K[\frac{q1}{R2}-\frac{q1}{R1} ]](https://tex.z-dn.net/?f=%3DK%5B%5Cfrac%7Bq1%7D%7BR2%7D-%5Cfrac%7Bq1%7D%7BR1%7D%20%5D)
On substituting the values, we get
Δ 
Answer:
The total voltage of the circuit is 18 volts.
Explanation:
We have, three identical resistors of resistance 3 ohms are connected in series in a circuit.
For a series combination, the equivalent resistance is given by the sum of individual resistances i.e.

Let V is the voltage of the battery if the current in the circuit is 2 A. So,


So, the total voltage of the circuit is 18 volts.
Answer:
(4) weight
Explanation:
The centripetal force acting on the space shuttle in orbit is given by:

where
m is the mass of the shuttle
v is the tangential speed of the shuttle
r is the radius of its circular orbit
When the shuttle orbits the Earth, the centripetal force that keeps the shuttle in circular motion is given by the gravitational attraction between the shuttle and the Earth, which corresponds to the weight of the shuttle, and it is given by:

where
G is the gravitational constant
M is the Earth's mass
And this force, therefore, corresponds to the centripetal force.
Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.