Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
Answer:
AM
Explanation:
to go from moles to grams you multiply by the Atomic Mass or Molar Mass (Atomic Mass for an element and Molar Mass for a compound).
The formula is:
Mass = moles * MM
Oceanic crust is the relatively thin part of the earths crust which underlies the ocean basins. it is geologically young compared with the continental crust and consists of basaltic rock overlain by sediments
Answer:
c2h4 (etthane........
bexcuse it has 6 bond of hydrogen
Answer: 72L of 30% and 128L of 80%
You can determine the weight of the acid by multiplying the concentration with the volume. Let say v1 is the volume of 30% solution needed and v2 is the volume of 80% solution.
The weight of acid from the used solution should be equal to the product. You can get this equation
final solution= solution1 + solution2
200l * 62%= v1 * 30% + v2*80%
124L= 0.3v1 + 0.8v2
124L- 0.3v1= 0.8v2
v2=155L- 0.375v1
The total volume of both should be 200l. If you use the previous equation, you can calculate:
v1+v2=200L
v1+ (155L- 0.375v1)= 200L
0.625v1= 200L - 155L
v1= 45/ 0.625= 72L
v1+v2=200L
v2= 200L- 72L= 128L