Answer:
By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.
Explanation:
Answer:
5.5 m/ sec
Explanation:
Because the inclined surface is frictionless so we can assume that total change of energy is zero
i-e ΔE = 0
Or we can say that difference between final and initial energy is zero i-e
Ef- Ei =0
Where,
Ef= final energy at the top of the ramp= KEf+PEf
Ei= Initial energy at the bottom of the ramp=KEi+PEi
So we have
(KEf+PEf)-(KEi+PEi)=0
==>KEf-KEi+PEf-PEi=0 -------------(1)
KEf = mgh = 200×9.8×h
Where h= Sin 22 = h/d= h/4.1
or
0.375×4.1=h
or h= 1.54 m
So, PEf= 200×9.8×1.54=3018.4 j
and KEf= 1/2 m
= 0.5×200×0=0 j
PEi= mgh = 200×9.8×0=0 j
KEi= 1/2 m
=0.5×200×
=100
j
Put these values in eq 1, we get;
0-100
+3018.4-0=0
-100
=-3018.4
==>
= 30.184
==> Vi = 
Answer:
310 meters
Explanation:
Given:
v₀ = 0 m/s
t = 8.0 s
a = -9.8 m/s²
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (8.0 s) + ½ (-9.8 m/s²) (8.0 s)²
Δy = -313.6
Rounded to two significant figures, the object fell 310 meters.
Answer:
The amount of work done required to stretch spring by additional 4 cm is 64 J.
Explanation:
The energy used for stretching spring is given by the relation :
.......(1)
Here k is spring constant and x is the displacement of spring from its equilibrium position.
For stretch spring by 2.0 cm or 0.02 m, we need 8.0 J of energy. Hence, substitute the suitable values in equation (1).

k = 4 x 10⁴ N/m
Energy needed to stretch a spring by 6.0 cm can be determine by the equation (1).
Substitute 0.06 m for x and 4 x 10⁴ N/m for k in equation (1).

E = 72 J
But we already have 8.0 J. So, the extra energy needed to stretch spring by additional 4 cm is :
E = ( 72 - 8 ) J = 64 J
Data !
hope this helped <3