Answer:
Answer:Neurons communicate through an electrochemical process. Sensory receptors interact with stimuli such as light, sound, temperature, and pain which is transformed into a code that is carried to the brain by a chain of neurons. Then systems of neurons in the brain interpret this information.
Answer:Neurons communicate through an electrochemical process. Sensory receptors interact with stimuli such as light, sound, temperature, and pain which is transformed into a code that is carried to the brain by a chain of neurons. Then systems of neurons in the brain interpret this information.Explanation:
bro edit it yrself
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.
-- Speed = (distance) / (time to cover the distance) = 840/2.5 = 336 m/s
-- Frequency = (speed) / (wavelength) = 336/0.70 = 480 Hz.
Answer: Frequency factor A = 8 × 10⁹
activation energy Ea = 15.5 KJ/Mol
Explanation: to begin, let us first define the parameters given;
K₁ = 1.44 × 10⁷dm³mol⁻¹s⁻¹
K₂ = 3.03 × 10⁷ dm³mol⁻¹s⁻¹
K₃ = 6.9 × 10 dm³mol⁻¹s⁻¹
also T₁ = 300.3 K
T₂ = 341.2 K
T₃ = 392.2 K
we know that;
㏑ K₂ / K₁ = Ea/R [1/T₁ -1/T₂]
where R is given as 8.314 J/mol-k
Ea = activation energy
K₁, K₂ = rate constant
T₁, T₂ = Temperature
therefore, ㏑ (3.03 × 10⁷/ 1.44 × 10⁷) = Ea / 8.314 [1/300.3 - 1/341.2]
this gives Ea = 15496.16 J/Mol ≈ 15.5 KJ /Mol
∴ Ea = 15.5 KJ/ Mol
also given that K = A e⁻∧Ea/RT
here A = frequency factor
∴ 6.9 × 10⁷ = A e⁻ ∧(15496.16/8.314 × 392.2)
A = 7.99 × 10⁹ = 8 × 10⁹
Answer:
A constant value everywhere in the universe.
Explanation:
The speed of light in a vacuum is a constant value. It is not affected by change in frequency or wavelength of the light.
Mathematically the speed of light is given as:
c = λf
where λ = wavelength and f - frequency
The speed of light is the constant of proportionality between frequency and wavelength. In order words, wavelength and frequency are inversely proportional. As the wavelength increases, frequency decreases and vice versa.
While the change in wavelength and frequency of light affect the energy of the light, its speed is a constant value as long as the medium is a vacuum.
The speed of light is also not dependent on the manner with which the light wave is moving.