The answer is <span>higher than.
</span><span>A sound-producing object is moving toward an observer. The sound the observer hears will have a frequency higher than that actually being produced by the object.
Why?
</span>As the source of the waves is moving toward the observer, each of the successive wave crest<span> is emitted from a position closer to the observer than the previous wave.
Thus each wave takes slightly less time to reach the observer than the previous wave. So, the time between the arrival of successive wave crests at the observer is reduced, increasing the frequency. </span>
Answer:
A) a frictional force is acting on it
Explanation:
The crate is sliding down the inclined ramp at constant velocity: constant velocity means zero acceleration, a = 0. According to Newton's second law:
F = ma
this also means that the net force acting along the direction of the slope is zero.
Without frictional force, there would be only one force acting along this direction: the component of the weight of the crane parallel to the slope, acting downward:

where
is the angle of the incline. Therefore, the net force along this direction would not be zero. In order to have a net force of zero, there must be another force acting upward on the crate: and the only force that is possibly acting on the crate against its direction of motion is the frictional force, whose magnitude must be equal to
, in order to produce a net force of zero (and therefore, a zero acceleration).
Answer: 0.29 kN
Explanation:
We have the following data:
is the weight of the astronaut on Earth
is the free fall acceleration due gravity on Earth (directed downwards)
is the free fall acceleration due gravity on Zuton (directed downwards)
is the acceleration of the spaceship at litoff (directed upwards)
We have to find the <u>magnitude of the force</u>
the space ship exerts on the astronaut.
Firstly, we have to know weight has a direct relation with the mass and the acceleration due gravity. In the case of Earth is:
(1)
Where
is the mass of the atronaut.
Isolating
:
(2)
(3)
(4)
Now that we know the mass of the astronaut, we can find its weight on Zuton:
(5)
(6)
(7)
Then, we can calculate the force the space ship exerts on the astronaut by the following equation:
(8)
Isolating
:
(9)
(10)
(11)
Finally:
Answer:
force and leverage distance
Explanation:
the formula for torque if = force x distance
(the distance above is the leverage distance on the crow bar)
therefore if there is an increase in either the torque or the leverage distance, or both, the torque exerted by the crow bar also increases.
for example
- lets assume a force of 5 n is applied on the crow bar with a leverage distance of 2 m.
the torque = 5 x 2 = 10 N.m
- but if the force was increased to 7 N
torque = 7 x 2 = 12 N.m
from the illustration above, we can see that the torque increased with an increase in force. There would also be an increase in torque if the distance were to be increased.