1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
3 years ago
7

When parking uphill on a two-way street with no curb, your front door wheels should be

Physics
1 answer:
liubo4ka [24]3 years ago
7 0

When parking uphill on a two-way street with no curb, your front wheels should be: Turned to the right (toward the street). When you come to a corner where there are no traffic lights or stop signs, you should: Slow down, so you can stop, if necessary.

You might be interested in
Can someone help me answer this
netineya [11]

Answer: b is sedimentary. c is metamorphic. and a is igneous.

Explanation:

6 0
3 years ago
Read 2 more answers
Torque can cause the angular momentum vector to rotate in UCM. This motion is called ___________.
emmainna [20.7K]

Torque can cause the angular momentum vector to rotate in UCM. This motion is called _Conservation of Angular momentum__________.

Answer:

Conservation of Angular momentum

Explanation:

The motion of an object in a circular path at constant speed is known as uniform circular motion (UCM). An object in UCM is constantly changing direction, and since velocity is a vector and has direction, you could say that an object undergoing UCM has a constantly changing velocity, even if its speed remains constant.

The law of conservation of angular momentum states that when no external torque acts on an object, no change of angular momentum will occur.

Key Points

When an object is spinning in a closed system and no external torques are applied to it, it will have no change in angular momentum.

The conservation of angular momentum explains the angular acceleration of an ice skater as she brings her arms and legs close to the vertical axis of rotation.

If the net torque is zero, then angular momentum is constant or conserved.

Angular Momentum

The conserved quantity we are investigating is called angular momentum. The symbol for angular momentum is the letter L. Just as linear momentum is conserved when there is no net external forces, angular momentum is constant or conserved when the net torque is zero. We can see this by considering Newton’s 2nd law for rotational motion:

τ→=dL→dt, where  

τ is the torque. For the situation in which the net torque is zero,  

dL→dt=0.

If the change in angular momentum ΔL is zero, then the angular momentum is constant; therefore,

⇒

L  =constant

L=constant (when net τ=0).

This is an expression for the law of conservation of angular momentum.

Example and Implications

An example of conservation of angular momentum is seen in an ice skater executing a spin,  The net torque on her is very close to zero,

because (1) there is relatively little friction between her skates and the ice, and (2) the friction is exerted very close to the pivot point.

Conservation of angular momentum is one of the key conservation laws in physics, along with the conservation laws for energy and (linear) momentum. These laws are applicable even in microscopic domains where quantum mechanics governs; they exist due to inherent symmetries present in nature.

7 0
3 years ago
A wheel of radius R, mass M, and moment of inertia I is mounted on a frictionless, horizontal axles. A light cord wrapped around
Alex_Xolod [135]

Answer:

\alpha =\frac{m*g*R}{I-m*R^2}

a = \frac{m*g*R^2}{I-m*R^2}

T=\frac{I*m*g}{I-m*R^2}

Explanation:

By analyzing the torque on the wheel we get:

T*R=I*\alpha    Solving for T:   T=I/R*\alpha

On the object:

T-m*g = -m*a    Replacing our previous value for T:

I/R*\alpha-m*g = -m*a

The relation between angular and linear acceleration is:

a=\alpha*R

So,

I/R*\alpha-m*g = -m*\alpha*R

Solving for α:

\alpha =\frac{R*m*g}{I+m*R^2}

The linear acceleration will be:

a =\frac{R^2*m*g}{I+m*R^2}

And finally, the tension will be:

T =\frac{I*m*g}{I+m*R^2}

These are the values of all the variables: α, a, T

8 0
3 years ago
Which lists three organic biological molecules?
igor_vitrenko [27]

Answer:

B

Explanation:

I'm learning it in science.

8 0
3 years ago
a car traveling at 24 m/s starts to decelerate steadily. It comes to a complete stop in 6 seconds what is its acceleration?
Irina18 [472]
We can solve for the acceleration by using a kinematic equation. First we should identify what we know so we can choose the  correct equation.

We are given an original velocity of 24 m/s, a final velocity of 0 m/s, and a time  of 6 s. We and looking for acceleration (a) in m/s^2.

The following equation has everything we need:

v_f=v_i + at

So plug in the known values and solve for a:

0 = 24 + 6a

-24 = 6a

a = -4 m/s^2
8 0
4 years ago
Other questions:
  • The rate an object is moving relative to a reference point is its
    5·1 answer
  • A gas is in a sealed container.Part ABy what factor does the gas temperature change if the volume is doubled and the pressure is
    14·1 answer
  • Explain why sedimentary rocks are found as a veneer covering large areas of the continental igneous rocks
    13·2 answers
  • How are calculation for velocity and speed different
    6·1 answer
  • What provides the energy for the conversion from the open complex to chain elongation?
    14·1 answer
  • A small 18 kilogram canoe is floating downriver at a speed of 1 m/s. What is the canoe's kinetic energy?
    13·1 answer
  • Please help
    7·2 answers
  • Function Of The glottis​
    13·2 answers
  • Hey can anyone please help me with this it’s due in few hours and I’m stuck with ittt
    6·1 answer
  • If a lever has an input arm of 80 cm and an output arm of 20 cm, what is its ideal mechanical advantage?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!