1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mumz [18]
3 years ago
7

Tony has a mass of 50 kg, and his friend Sam has a mass of 45 kg. Assume that both friends push off on their roller blades with

the same force. Explain which boy will have greater acceleration.
Tony will have greater acceleration for a given amount of force.
Sam will have greater acceleration due to greater mass.
Tony will have greater acceleration due to greater velocity.
Sam will have greater acceleration for a given amount of force.
Physics
1 answer:
wolverine [178]3 years ago
3 0
I believe it is D because if the mass is smaller then greater the acceleration for it to be equal force. Hope this helps! Sorry, if I'm wrong. 
You might be interested in
What is the maximum force that could be applied to anterior cruciate ligament (ACL) if it has a diameter of 4.8 mm and a tensile
vovangra [49]

Answer:

Maximum force, F = 1809.55 N

Explanation:

Given that,

Diameter of the anterior cruciate ligament, d = 4.8 mm

Radius, r = 2.4 mm

The tensile strength of the anterior cruciate ligament, P=100\times 10^6\ N/m^2=10^8\ Pa

We need to find the maximum force that could be applied to anterior cruciate ligament. We know that the unit of tensile strength is Pa. It must be a type of pressure. So,

F=P\times A\\\\F=10^8\times \pi (2.4\times 10^{-3})^2\\\\F=1809.55\ N

So, the maximum force that could be applied to anterior cruciate ligament is 1809.55 N

4 0
3 years ago
PLeAsE hElp <br> What is the kinetic energy of 14 Kg traveling at a velocity of 3m/s east
harkovskaia [24]

Answer:

Please see the given attachment.

Explanation:

Stay safe, stay healthy and be blessed.

Thank you.

<h2><em><u>PLEASE</u></em><em><u> </u></em><em><u>MARK</u></em><em><u> </u></em><em><u>ME</u></em><em><u> </u></em><em><u>AS </u></em><em><u>BRAINLEST</u></em><em><u>.</u></em></h2>

4 0
3 years ago
I NEED A SCIENCE EXPERT TO GIVE ME THE RIGHT ANSWER TO THESE ASAP NO LINKS !!!
ddd [48]

Answer:

1 st question: Control variable

2nd question: random variable

3rd question: if the two objects are dropped from the same height they will hit the ground at the same time

6 0
2 years ago
Read 2 more answers
Ejection of Electrons from Hydrogen by Incident Photons Light of wavelength 80 nm is incident on a sample of hydrogen gas, resul
timofeeve [1]

Answer:

a)   K_{max} = 1.9 eV = 3.04 10⁻¹⁹ J,b ) This means that some electrons are at the first excited level of the hydrogen atom, which is highly likely as the temperature rises.

Explanation:

a) To calculate the maximum kinetic energy of the expelled electrons let's use the relationships of the photoelectric effect

      K_{max}= h f - Φ

Where K is the kinetic energy, h the Planck constant that is worth 6.63 10⁻³⁴ Js, f the frequency and Φ the work function

The speed of light is related to wavelength and frequency

     c = λ f

Let's analyze the work function, it is the energy needed to start an electron from a metal, in this case to start an electron from a hydrogen atom its fundamental energy is needed, so

     Φ= E₀ = 13.6 eV

let's replace and calculate the energy of the incident photon

     E = h c / λ

     E = 6.63 10⁻³⁴ 3 10⁸/80 10⁻⁹

     E = 2,486 10⁻¹⁸ J

Let's reduce to eV

     E = 2,486 10⁻¹⁸ (1 eV / 1.6 10⁻¹⁹)

     E = 15.5 eV

Now we can calculate the kinetic energy

     K_{max}= h c / f - fi

      K_{max} = 15.5 -13.6

     K_{max} = 1.9 eV

b)     Extra energy = 10.2 eV

The total kinetic energy of electrons is

       Total kinetic energy = 1.9 +10.2 = 12.1 eV

For the calculation we are assuming that all the electors are in the hydrogen base state, but for temperatures greater than 0K some electors may be in some excited state, so less energy is needed to tear them out of hydrogen atom.

Let's analyze this possibility

      ΔE = E photon - Total kinetic energy electron

      ΔE = 15.5 - 12.1

      ΔE = 3.4 eV

If we use the Bohr ratio for the hydrogen atom

     E_{n} = 13.606 / n2

     n = √ 13.606 / En

     n = √ (13606 / 3.4)

     n = 2

This means that some electrons are at the first excited level of the hydrogen atom, which is highly likely as the temperature rises.

8 0
3 years ago
HEEEEELLLPPPPPP!!!!!!!!!!! PPPPPPPPPPPLLLEAASSEE!!!
o-na [289]

Answer:

The arrows always start at the magnet's north pole and point towards its south pole. When two like-poles point together, the arrows from the two magnets point in OPPOSITE directions and the field lines cannot join up. So the magnets will push apart (repel).

4 0
3 years ago
Other questions:
  • A heavy flywheel rotating on its central axis is slowing down because of friction in its bearings. At the end of the first minut
    15·1 answer
  • How did Rutherford's experiments demonstrate that Thomson's model of the atom was incorrect?
    10·2 answers
  • The picture above shows salt (NaCI) dissolved in water (H2O) which statement is true?
    6·1 answer
  • When bonds between atoms are broken or formed, what is the outcome? A. a physical change B. an element increasing in size C. a c
    15·1 answer
  • What is reflection? Reflection is light that has struck a surface and has _______.
    5·1 answer
  • A white blood cell has a diameter of approximately 12 micrometers or 0.012 um a model represents its diameter as 24 um what rati
    13·1 answer
  • a camera with a 100mm lens can be used to focus objects from 6pm to infinity onto screen. how much must the lens be moved to foc
    13·1 answer
  • Why should people pay attention to scientists when making decisions?
    5·1 answer
  • A 0.0625 tank contains 0.0925kg nitrogen at a gauge pressure of 5.17atm.Find the temperature of the gas in degree Celsius​
    9·1 answer
  • I’m not sure what this is… help please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!