1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
3 years ago
8

An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an elec

tric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of â3.45Ã10^â3 V .The charge and the mass of an alpha particle are qα = 3.20Ã10^â19 C and mα = 6.68Ã10â27 kg , respectively.
Mechanical energy is conserved in the presence of which of the following types of forces?

a. electrostatic
b. frictional
c. magnetic
d. gravitational
Physics
1 answer:
vaieri [72.5K]3 years ago
5 0

Answer:

Speed = 575 m/s

Mechanical energy is conserved in electrostatic, magnetic and gravitational forces.

Explanation:

Given :

Potential difference, U = $-3.45 \times 10^{-3} \ V$

Mass of the alpha particle, $m_{\alpha} = 6.68 \times 10^{-27} \ kg$

Charge of the alpha particle is, $q_{\alpha} = 3.20 \times 10^{-19} \ C$

So the potential difference for the alpha particle when it is accelerated through the potential difference is

$U=\Delta Vq_{\alpha}$

And the kinetic energy gained by the alpha particle is

$K.E. =\frac{1}{2}m_{\alpha}v_{\alpha}^2 $

From the law of conservation of energy, we get

$K.E. = U$

$\frac{1}{2}m_{\alpha}v_{\alpha}^2 = \Delta V q_{\alpha}$

$v_{\alpha} = \sqrt{\frac{2 \Delta V q_{\alpha}}{m_{\alpha}}}$

$v_{\alpha} = \sqrt{\frac{2(3.45 \times 10^{-3 })(3.2 \times 10^{-19})}{6.68 \times 10^{-27}}}$

$v_{\alpha} \approx 575 \ m/s$

The mechanical energy is conserved in the presence of the following conservative forces :

-- electrostatic forces

-- magnetic forces

-- gravitational forces

You might be interested in
a 12000.0-kg car is traveling at 19 m/s. the driver suddenly slams on the brakes and skids to a stop. The coefficient of kinetic
tensa zangetsu [6.8K]
What I don’t get it ?
6 0
3 years ago
Why do objects that lie half in and half out of water appear distorted?
trasher [3.6K]
Because upward buoyant force is slightly higher than gravitation force for this particular  object 

8 0
3 years ago
Consult Interactive Solution 10.37 to explore a model for solving this problem. A spring is compressed by 0.0647 m and is used t
padilas [110]

Answer:

\omega=32.14\ rad/s

Explanation:

Given that,

The compression in the spring, x = 0.0647 m

Speed of the object, v = 2.08 m/s

To find,

Angular frequency of the object.

Solution,

We know that the elation between the amplitude and the angular frequency in SHM is given by :

v=\omega\times A

A is the amplitude

In case of spring the compression in the spring is equal to its amplitude

\omega=\dfrac{v}{A}

\omega=\dfrac{2.08\ m/s}{0.0647\ m}

\omega=32.14\ rad/s

So, the angular frequency of the spring is 32.14 rad/s.

4 0
3 years ago
In an electric field, 0.90 joule of work is required to bring 0.45 coulomb of charge from point a to point
jarptica [38.1K]
The difference in electric potential energy between the two points is
\Delta U = q \Delta V
where q is the magnitude of the charge and \Delta V is the electric potential difference.

But for energy conservation, the difference in electric potential energy \Delta U between the two points is equal to the work done to move the charge between A and B:
W=\Delta U
so we have
W=q \Delta V

and by substituting the numbers of the problem, we find the value of \Delta V:
\Delta V =  \frac{W}{q}= \frac{0.90 J}{0.45 C}=2 V
3 0
2 years ago
You just calibrated a constant volume gas thermometer. The pressure of the gas inside the thermometer is 294.0 kPa when the ther
Travka [436]

Answer: 361° C

Explanation:

Given

Initial pressure of the gas, P1 = 294 kPa

Final pressure of the gas, P2 = 500 kPa

Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K

Final temperature of the gas, T2 = ?

Let us assume that the gas is an ideal gas, then we use the equation below to solve

T2/T1 = P2/P1

T2 = T1 * (P2/P1)

T2 = (100 + 273) * (500 / 294)

T2 = 373 * (500 / 294)

T2 = 373 * 1.7

T2 = 634 K

T2 = 634 K - 273 K = 361° C

5 0
3 years ago
Other questions:
  • In 2009, Melissa developed a hydrogen powered engine for a car while working in her garage in her spare time. Melissa installed
    13·1 answer
  • From the frame of reference of car 2, what is the velocity of car
    7·1 answer
  • When you put a book on a table the table pushes back. which newton law
    7·1 answer
  • Physics includes the study of using radio waves to explore stars and identify other planets.
    7·2 answers
  • Which of the following statements are true? I. The number of protons in an element is the same for all neutral atoms of that ele
    9·1 answer
  • Carlos pushes a 3 kg box with a force of 9 newtons. The force of friction on the box is 3 newtons in the opposite direction. Wha
    13·2 answers
  • How do collisions affect the momentum of objects?<br> HELP ASAP
    13·1 answer
  • What is the difference between homophones and homographs.
    11·1 answer
  • What do you mean by kinetic energy and potential energy ?
    10·1 answer
  • I will run one mile in under 10 minutes 3 months from today.” is an example of a ___________ goal.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!