Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Answer:
C. The left wire attracts the right wire and exerts as much force as the right wire does.
Explanation:
To know what is the answer you first take into account the magnetic field generated by each current, for a distance of d:

Next, you use the formula for the magnetic force produced by the wires:

if the direction of the L vector is in +k direction, the first wire produced a magnetic field with direction +y, that is, +j and the second wire produced magnetic field with direction -y, that is, -j (this because the direction of the magnetic field is obtained by suing the right hand rule). Hence, the direction of the magnetic force on each wire, produced by the other one is:

Hence, due to this result you have that:
C. The left wire attracts the right wire and exerts as much force as the right wire does.
Answer:
Y will experience the most acceleration
Explanation:
Because using F=ma, you can rearrange the formula to show that acceleration equals force over mass. You then do the calculations for each of the objects, and y will be your answer.
D) the magnetic field surrounds the wire like a tube , with a counterclockwise field direction...
as it is in the left hand thumb rule
Answer:

Also as we can see the equation that heat flux directly depends on the temperature gradient so more is the temperature gradient then more will be the heat flux.
For positive temperature gradient the heat will flow outwards while for negative temperature gradient the heat will flow inwards
Explanation:
As we know that heat flux is given by the formula

here we know that
K = thermal conductivity
= temperature gradient
now we know that

also we know that
K = 1.7 W/mK
now we have

so temperature gradient is given as

also in other unit it will be same

Also as we can see the equation that heat flux directly depends on the temperature gradient so more is the temperature gradient then more will be the heat flux.
For positive temperature gradient the heat will flow outwards while for negative temperature gradient the heat will flow inwards