Answer:
<em>The period of the motion will still be equal to T.</em>
<em></em>
Explanation:
for a system with mass = M
attached to a massless spring.
If the system is set in motion with an amplitude (distance from equilibrium position) A
and has period T
The equation for the period T is given as

where k is the spring constant
If the amplitude is doubled, the distance from equilibrium position to the displacement is doubled.
Increasing the amplitude also increases the restoring force. An increase in the restoring force means the mass is now accelerated to cover more distance in the same period, so the restoring force cancels the effect of the increase in amplitude. Hence, <em>increasing the amplitude has no effect on the period of the mass and spring system.</em>
Answer:
T
Explanation:
= magnitude of current in each wire = 2.0 A
= length of the side of the square = 4 cm = 0.04 m
= length of the diagonal of the square =
a =
(0.04) = 0.057 m
= magnitude of magnetic field by wires at A and C


T
= magnitude of magnetic field by wire at B


T
Net magnitude of the magnetic field at D is given as



T
So the problem are asking to find the value of G base on the formula of the said equation of the magnitude of gravitational attraction on either body. Base on that, the possible answer or the derived formula of the said function is G = Fr^2/m1m2. I hope you are satisfied with my answer and feel free to ask for more
82ohms
Explanation:
The equivalent resistance in the circuit is 82ohms
Given parameters:
R1 = 50ohms
R2 = 32ohms
Unknown:
Equivalent resistance = ?
Solution:
A resistor is an body in circuit that opposes the flow of electric current.
Resistors are usually connected in circuit and in series arrangement.
When resistors are connected in series, they have the same current passing through them.
Equivalent resistance is the sum of each of the connected resistors
Equivalent resistance = R1 + R2 = 50 + 32 = 82ohms
learn more:
Circuits brainly.com/question/2364338
#learnwithBrainly