A bicyclist can ride their bicycle still on the road. Bicycle riders be able to take the public ways which has the similar rights and accountability as motorists and are subject to the same guidelines and protocols. The law says that individuals who ride bikes should ride as nearby to the right side of the road as likely excluding under the following conditions: when passing, preparing for a left go, evading risks, if the lane is too constricted to share, or if oncoming a place where a right turn is approved. In a road which has a bike lane the bicyclists roving slower than road traffic must custom the bike way excluding when creating a left turn, passing, evading hazardous settings, or impending a place where a right turn is approved.
This question is incomplete, the complete question is;
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength 1.5 m from the center of the circle is 7 mV/m.
At what rate is the magnetic field changing?
Answer:
the magnetic field changing at the rate of 9.33 m T/s
Explanation:
Given the data in the question;
Electric field E = 7 mV/m
radius r = 1.5 m
Now, from Faraday law of induction;
∫E.dl = d∅/dt
E∫dl = A( dB/dt )
E( 2πr ) = πr² ( dB/dt )
( 0.007 ) = (r/2) ( dB/dt )
( 0.007 ) = 0.75 ( dB/dt )
dB/dt = 0.007 / 0.75
dB/dt = 0.00933 T/s
dB/dt = ( 0.00933 × 1000) m T/s
dB/dt = 9.33 m T/s
Therefore, the magnetic field changing at the rate of 9.33 m T/s
Answer:
50 N.
Explanation:
On top of a horizontal surface, the normal force acting on an object is equivalent to the force of gravity acting on the object. That is:
The mass of the block is 5 kg and the given force due to gravity is 10 N/kg. Substitute and evaluate:
In conclusion, the normal force acting on the block is 50 N.
Since there is no friction between the ladder and the wall, there can be no vertical force component. That's the tricky part ;)
So to find the weight, divide the 100N <em>normal</em> force by earths gravitational acceleration, 9.8m/s^2
Then;
Draw an arrow at the base of the ladder pointing towards the wall with a value of 30N, to show the frictional force.
Explanation:
Given that,
The mean kinetic energy of the emitted electron,
(a) The relation between the kinetic energy and the De Broglie wavelength is given by :
(b) According to Bragg's law,
n = 1
For nickel,
As the angle made is very small, so such an electron is not useful in a Davisson-Germer type scattering experiment.