Answer:
Here is the complete question:
https://www.chegg.com/homework-help/questions-and-answers/magnetic-field-372-t-achieved-mit-francis-bitter-national-magnetic-laboratory-find-current-q900632
a) Current for long straight wire 
b) Current at the center of the circular coil 
c) Current near the center of a solenoid 
Explanation:
⇒ Magnetic Field due to long straight wire is given by (B),where

Plugging the values,
Conversion
,and 

⇒Magnetic Field at the center due to circular coil (at center) is given by,
So 
⇒Magnetic field due to the long solenoid,
Then
So the value of current are
,
and
respectively.
Answer:
v = 19.6 m/s.
Explanation:
Given that,
The radius of the circle, r = 5 m
The time period of the ball, T = 1.6s
We need to find the ball's tangential velocity.
The formula for the tangential velocity is given by :

Putting all the values in the above formula

So, the tangential velocity of the ball is 19.6 m/s. Hence, the correct option is (c).
Volumetric flasks are most accurate
Answer:
The density is: 
Explanation:
Recall that density is defined as the quotient of the object's mass divided by volume. So, we calculate the volume of the 3 cm side cube:

then the density becomes:

Answer:
142.7650889
Explanation:
I think the answer above is correct. So to find the velocity of the wave you can do: frequency*wavelength = velocity
in your case, the velocity is equal to 403.5m/s
so we know that the 403.52 is the total velocity of the wave
and the equation: velocity at 0 degrees Celsius *
where T represents temperature in Kelvins = veloctity
so we set 403.52 = 327*
and solve for T
T will then equal the degree in Kelvins
so to convert from Kelvins to degrees celsius you subtract 273 from the Kelvins value and you are left with the degrees in Celsius which equals 142.7650889 degrees Celsius