Answer:
(i)
, (ii)
, (iii) 
Explanation:
(i)
and
represent the points where particle has a velocity of zero and spring reach maximum deformation, Given the absence of non-conservative force and by the Principle of Energy Conservation, the position where particle is at maximum speed is average of both extreme positions:

(ii) Maximum accelerations is reached at
and
.

(iii) Greatest net forces exerted on the particle are reached at
and
.

1. C. Upper Left
2. B. For about 90% of their lifetime
Answer:
(a) the tangential speed of a point at the edge is 3.14 m/s
(b) At a point halfway to the center of the disc, tangential speed is 1.571 m/s
Explanation:
Given;
angular speed of the disc, ω = 500 rev/min
diameter of the disc, 120 mm
radius of the disc, r = 60 mm = 0.06 m
(a) the tangential speed of a point at the edge is calculated as follows;

Tangential speed, v = ωr
v = 52.37 rad/s x 0.06 m
v = 3.14 m/s
(b) at the edge of the disc, the distance of the point = radius of the disc
at half-way to the center, the distance of the point = half the radius.
r₁ = ¹/₂r = 0.5 x 0.06 m = 0.03 m
The tangential velocity, v = ωr₁
v = 52.37 rad/s x 0.03 m
v = 1.571 m/s
☁️ Answer ☁️
annyeonghaseyo!
The answer is:
Because it takes the Earth a full year to move from one end of its orbit to the other, and because that distance is so tiny compared to the distance to the star, and because the star is aligned with the Earth's axis of rotation, it doesn't appear to ever move. The north pole coincidentally points at this star.
Hope it helps.
Have a nice day noona/hyung!~  ̄▽ ̄❤️