The acceleration of the sled will be 1.30 m/s². Force is defined as the product of mass and acceleration.
<h3>What is force?</h3>
Force is defined as the push or pulls applied to the body. Sometimes it is used to change the shape, size, and direction of the body.
Given data;
m(mass of sled)=8 kg
Θ is the inclination of force= 50°
Force of friction,f=2.4 N.
The applied force at the given angle is resolved into the two-component as;


The net vertical force is zero;

From Newton's second law the net force as;

Hence, the acceleration of the sled will be 1.30 m/s².
To learn more about the force refer to the link;
brainly.com/question/26115859
#SPJ1
Answer:
The maximum energy stored in the combination is 0.0466Joules
Explanation:
The question is incomplete. Here is the complete question.
Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.
Energy stored in a capacitor is expressed as E = 1/2CtV² where
Ct is the total effective capacitance
V is the supply voltage
Since the capacitors are connected in series.
1/Ct = 1/C1+1/C2+1/C3
Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF
1/Ct = 1/11.7 + 1/21.0 + 1/28.8
1/Ct = 0.0855+0.0476+0.0347
1/Ct = 0.1678
Ct = 1/0.1678
Ct = 5.96μF
Ct = 5.96×10^-6F
Since V = 125V
E = 1/2(5.96×10^-6)(125)²
E = 0.0466Joules
Answer:
the work done by the lawnmower is 236.14 J.
Explanation:
Given;
power exerted by the lawnmower engine, P = 19 hp
time in which the power was exerted, t = 1 minute = 60 s.
1 hp = 745.7 watts
The work done by the lawnmower is calculated as follows;

Therefore, the work done by the lawnmower is 236.14 J.
The answer is ; 6cm
Hope this helps!
Please give Brainliest!
This is because of the diagram below:
Answer:
The nearest plant (A) receives 4 times more radiation from the farthest plant
Explanation:
The energy emitted by the star is distributed on the surface of a sphere, whereby intensity received is the power emitted between the area of the sphere
I = P / A
P = I A
The area of the sphere is
A = 4π r²
Since the amount of radiation emitted by the star is constant, we can write this expression for the position of the two planets
P = I₁ A₁ = I₂ A₂
I₁ / I₂ = A₂ / A₁
Suppose index 1 corresponds to the nearest planet,
r2 = 2 r₁
I₁ / I₂ = r₁² / r₂²
I₁ / I₂ = r₁² / (2r₁)²
I₁ / I₂ = ¼
4 I₁ = I₂
The nearest plant (A) receives 4 times more radiation from the farthest plant