A free electron is one which has become detached from a covalent bond between two atoms and is able to move around from atom to atom and possibly take part in electric current flow.
Explanation:
V=u+at
where,
v=final speed
u=initial speed,(starting speed)
a=acceleration
t=time
- v=u+at = 6=2+a*2
6=2+2a
2a=6-2
2a=4
a=4/2 = 2
a =2
2. to find time taken
v=u+at
25=5*2t
2t=25-5
2t=20
t=20/2
t=10sec
3. finding final speed
v=u+at
v=4+10*2
=4+20
v=24m/sec
5.v=u+at
=5+8*10
=5+80
V=85m/sev
6. v=u+at
8=u+4*2
8=u+8
U=8/8
u=1
these are your missing values
Answer:
T₂ = 20.06 ° C
Explanation:
Given
P = 90 kg, T₁ = 20 ° C, h = 30 m, c = 1.82 kJ / Kg * ° C
Using the formula to determine the final temperature of the water
T₂ = T₁ * P * h / Eₐ * c
The work done of the person to the water
Eₐ = 1000 kg / m³ * 5 m³ * 9.8 m / s²
Eₐ = 49000 N
T₂ = 20 ° C +[ (90 kg * 30m) / (49000 N * 1.82) ]
T₂ = 20.06 ° C
Kepler derived his three laws of planetary motion entirely from
observations of the planets and their motions in the sky.
Newton published his law of universal gravitation almost a hundred
years later. Using some calculus and some analytic geometry, which
any serious sophomore in an engineering college should be able to do,
it can be shown that IF Newton's law of gravitation is correct, then it MUST
lead to Kepler's laws. Gravity, as Newton described it, must make the planets
in their orbits behave exactly as they do.
This demonstration is a tremendous boost for the work of both Kepler
and Newton.
Answer:
7500 m/s
Explanation:
We can use the equation velocity of a wave equals wavelength times frequency. Therefore, v = wavelength*f = (25 m)(300 Hz) = m/s7,500