Answer:
Option B. 4.25×10¯¹⁹ J
Explanation:
From the question given above, the following data were obtained:
Frequency (f) = 6.42×10¹⁴ Hz
Energy (E) =?
Energy and frequency are related by the following equation:
Energy (E) = Planck's constant (h) × frequency (f)
E = hf
With the above formula, we can obtain the energy of the photon as follow:
Frequency (f) = 6.42×10¹⁴ Hz
Planck's constant (h) = 6.63×10¯³⁴ Js
Energy (E) =?
E = hf
E = 6.63×10¯³⁴ × 6.42×10¹⁴
E = 4.25×10¯¹⁹ J
Thus, the energy of the photon is 4.25×10¯¹⁹ J
130.954g of Fe2O3 in 0.82 mol
Answer:

Explanation:
Hello,
In this case, for this heat transfer process in which the heat lost by the hot platinum is gained by the cold deuterium oxide based on the equation:

We can represent the heats in terms of mass, heat capacities and temperatures:

Thus, we solve for the mass of platinum:

Next, by using the density of platinum we compute the volume:

Which computed in terms of the edge length is:

Therefore, the edge length turns out:
![a=\sqrt[3]{180cm^3}\\ \\a=5.65cm](https://tex.z-dn.net/?f=a%3D%5Csqrt%5B3%5D%7B180cm%5E3%7D%5C%5C%20%5C%5Ca%3D5.65cm)
Best regards.
On a molecular level there is a lot of movement which in turn is the reason why heat is generated.
Answer:
This is a pretty straightforward example of how an ideal gas law problem looks like.
Your strategy here will be to use the ideal gas law to find the pressure of the gas, but not before making sure that the units given to you match those used by the universal gas constant.
So, the ideal gas law equation looks like this
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
P
V
=
n
R
T
a
a
∣
∣
−−−−−−−−−−−−−−−
Here you have
P
- the pressure of the gas
V
- the volume it occupies
n
- the number of moles of gas
R
- the universal gas constant, usually given as
0.0821
atm
⋅
L
mol
⋅
K
T
- the absolute temperature of the gas
Take a look at the units given to you for the volume and temperature of the gas and compare them with the ones used in the expression of
R
.
a
a
a
a
a
a
a
a
a
a
a
Need
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Have
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Liters, L
a
a
a
a
a
a
a
a
a
a
a
a
a
Liters, L
a
a
a
a
a
a
a
a
a
a
a
√
a
a
a
a
a
a
a
Kelvin, K
a
a
a
a
a
a
a
a
a
a
a
a
Celsius,
∘
C
a
a
a
a
a
a
a
a
a
×
Notice that the temperature of the gas must be expressed in Kelvin in order to work, so make sure that you convert it before plugging it into the ideal gas law equation
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
T
[
K
]
=
t
[
∘
C
]
+
273.15
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Rearrange the ideal gas law equation to solve for
P
P
V
=
n
R
T
⇒
P
=
n
R
T
V
Plug in your values to find
P
=
0.325
moles
⋅
0.0821
atm
⋅
L
mol
⋅
K
⋅
(
35
+
273.15
)
K
4.08
L
P
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
2.0 atm
a
a
∣
∣
−−−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the temperature of the gas.