A) red light
red lights are an example of an electromagnetic wave. visible lights are the only electromagnetic waves we can actually see on the spectrum. red, in particular has the biggest wavelength.
b) ocean waves
ocean waves are not an electromagnetic wave. in fact, it’s a mechanical wave. electromagnetic waves can travel through a vacuum, that is empty space, but mechanical waves cannot.
c) sound waves
sound waves are also not an electromagnetic wave. it’s a mechanical wave. you cannot hear electromagnetic waves.
d) earthquakes
an earthquake is also not an example of electromagnetic waves. it’s a mechanical wave.
hope this helps!
Answer:
The total number of oscillations made by the wave during the time of travel is 1.4 Oscillations. Strictly speaking, the number of complete oscillations is 1.
Explanation:
The required quantity is the number of complete oscillations made by the traveling wave. The amplitude time and frequency are not needed to calculate the number of oscillations as it is the ratio of the distance traveled to the wavelength( minimum distance that must be traveled to complete one oscillation) of the wave. So the total number of oscillations is 1.4 while the number of complete oscillations is 1 (strictly speaking). The detailed solution to this question can be found in the attachment below. Thank you!
Answer:
The answer is "Option C".
Explanation:
Wedging Freeze is generated by repeated freezing. Freeze wedging occurs, whenever the water is turned into ice as a result of the 9 percent expansion. When it freezes, cracks full of water are forced to separate further. and other options are incorrect, that can be described as follows:
- In option A, It is a state where the element converts into a liquid, that's why it is not correct.
- In option B, It is a reaction in which the bonds of water is divided into particular substance, that's why it is not correct.
- In option D, It is a form of mechanical or physical rock weathering, that's it is not correct.
Answer:
rubbing your socks on carpet
rubbing your hair with glove
Answer:
The average power provided by the tension in the cable pulling the lift is = 714 W
Explanation:
Given data
Mass = 71 kg
Change in height = 123 m
When the lift moves in upward direction then in that case kinetic energy is constant & only potential energy changes.
Change in potential energy Δ PE = m g (
)
Δ PE = 71 × 9.81 × 123
Δ PE = 85670.73 J
Time = 2 min = 120 sec
So average power is given by



Therefore the average power provided by the tension in the cable pulling the lift is = 714 W