Answer: A device that uses infrared sensors.
Explanation:
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
Explanation:
Given that,
Length of gold wire, l = 4 m
Voltage of battery, V = 1.5 V
Current, I = 4 mA
The resistivity of gold, 
Resistance in terms of resistivity is given by :

Also, V = IR
So,

A is area of wire,
, r is radius, r = d/2 (diameter=d)

Out of four option, near option is (C) 17 μm.
This problem is about the rate of the current. It's important to know that refers to the quotient between the electric charge and the time, that's the current rate.

Where Q = 2.0×10^−4 C and t = 2.0×10^−6 s. Let's use these values to find I.

<em>As you can observe above, the division of the powers was solved by just subtracting their exponents.</em>
<em />
<h2>Therefore, the rate of the current flow is 1.0×10^2 A.</h2>
Answer:
9 and 3 N
Explanation:
Forces in the same direction sum up to produce the resultant force;
One force subtract the other will give the resultant force when they are in opposite directions;
Lets say one direction is forwards and the opposite backwards;
We have one force, let's say force A, in the forwards direction and another force, force B, acting in the same (forwards) or opposite (backwards) direction;
If B is acting in the same direction, then the resultant force (in this case) will be as follows:
A + B = 12
If B is acting in the opposite direction, then the resultant force will be as follows:
A - B = 6
Summing the two equations will allow us to solve for A:
A + B + (A - B) = 12 + 6
2A = 18
A = 9
Substitute this into either of the above equations and we can solve for B:
(9) - B = 6
B = 9 - 6
B = 3