Answer:
1768 N
Explanation:
We can solve the problem by using Newton's second law:

where
F is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have a car of mass
m = 884 kg
And its acceleration is

Substituting into the equation, we find the net force on the car:

<span>Answer:
So it gets to the top of the ramp and stops. The parallel force pushing it down the ramp is mg sin θ, but for it to move, the frictional force must be overcome. This frictional force is μmg cos θ, where μ is the coefficient of static friction. For movement, then,
mg sin θ > μmg cos θ ==> tan θ > μ ==> θ > arctan 0.5 = 26.565° ==> θ = 27°</span>
Answer:
D
Explanation:
descriptive, because scientists are writing down the observations but not making comparisons.
Answer:
Si logra alcanzar el bus.
Explanation:
Para poder solucionar este problema debemos de tener en cuenta que Alicia corre a velocidad constante para poder alcanzar el bus. La formula de la cinematica que tiene en cuenta la velocidad constante es la siguiente:

donde:
Xf = Ubicacion del punto donde se encuentra el bus [m]
Xo = Ubicacion desde donde esta Alicia [m]
v = velocidad constante = 5 [m/s]
t = tiempo [s]
Xf - Xo = 15 [m]
15 = 5*t
t = 3 [s]
Ahora con el tiempo podemos encontrar la velocidad del bus por medio de la siguiente ecuacion de cinematica para la aceleracion constante:

donde:
Vf = velocidad del bus despues de los 3 [s]
Vi = velocidad inicial = 0
a = aceleracion = 0.5 [m/s^2]
Vf = 0 + (0.5*3)
Vf = 1.5 [m/s]
La velocidad del bus es menor que la velocidad de Alicia, por ende Alicia alcanzara el bus.
Answer:
a) 578.0 cm²
b) 25.18 km
Explanation:
We're given the density and mass, so first calculate the volume.
D = M / V
V = M / D
V = (6.740 g) / (19.32 g/cm³)
V = 0.3489 cm³
a) The volume of any uniform flat shape (prism) is the area of the base times the thickness.
V = Ah
A = V / h
A = (0.3489 cm³) / (6.036×10⁻⁴ cm)
A = 578.0 cm²
b) The volume of a cylinder is pi times the square of the radius times the length.
V = πr²h
h = V / (πr²)
h = (0.3489 cm³) / (π (2.100×10⁻⁴ cm)²)
h = 2.518×10⁶ cm
h = 25.18 km