Answer:
It’s called a conservative field.
Explanation:
I think it’s going to be the conservative field because in the question it talks about how it is able to become possible to define potential at a point in an electric field because electric field.
Mercury has less mass than earth. So the answer is B
Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
The given question is incomplete. The complete question is as follows.
A parallel-plate capacitor has capacitance
= 8.50 pF when there is air between the plates. The separation between the plates is 1.00 mm.
What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed
V/m?
Explanation:
It is known that relation between electric field and the voltage is as follows.
V = Ed
Now,
Q = CV
or, Q = 
Therefore, substitute the values into the above formula as follows.
Q = 
=
= 
Hence, we can conclude that the maximum magnitude of charge that can be placed on each given plate is
.