Answer:
24.531 m
Explanation:
t = Time taken = 1.7 s
u = Initial velocity = 6.1 m/s
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
Equation of motion

The initial height of the rock above the ground is 24.531 m
In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.
Answer:
a) 
b) 
c) 
d) 
Explanation:
<u>Given equation of pressure variation:</u>
![\Delta P= (1.78\ Pa)\ sin\ [(0.888\ m^{-1})x-(500\ s^{-1})t]](https://tex.z-dn.net/?f=%5CDelta%20P%3D%20%281.78%5C%20Pa%29%5C%20sin%5C%20%5B%280.888%5C%20m%5E%7B-1%7D%29x-%28500%5C%20s%5E%7B-1%7D%29t%5D)
We have the standard equation of periodic oscillations:

<em>By comparing, we deduce:</em>
(a)
amplitude:

(b)
angular frequency:


∴Frequency of oscillations:


(c)
wavelength is given by:



(d)
Speed of the wave is gives by:



Answer:
No more information is needed
Explanation:
Radio waves are electromagnetic energy, lower frequency forms of this type of energy that includes light and cosmic rays on the high frequency end that we are able to detect. So in free space (vacuum), radio waves travel at their fastest velocity, the “speed of light”. The reason for the quotation marks is because when light or radio waves are propagating through matter, we observe them traveling more slowly.
Explanation:
PE= mgh
6 J= (3m) (9.81 m/s2) (mass)
mass=( 6)/(3×9.81)
mass= 0.20 Kg