Gravity<span> is measured by the acceleration that it gives to freely falling objects. At Earth's surface the acceleration of </span>gravity<span> is about 9.8 metres (32 feet) per second per second.</span>
From the equations of linear motion,
v² = u² + 2as where v is the final velocity, u is the initial velocity and a is the gravitational acceleration, and s is the displacement,
Thus, v² = u² -2gs, but v=0
hence, u² = 2gs
= 2×9.81×0.43
= 8.4366
u = √8.4366
=2.905 m/s
Hence the initial velocity is 2.905 m/s
Then using the equation v= u +gt .
Therefore, v = u -gt. (-g because the player is jumping against the gravity)
but, v = 0
Thus, u= gt
Hence, t = u/g
= 2.905/9.81
= 0.296 seconds
Ohm's Law states V = IR
So,
I = V/R
The answer is B. 10/5=2 amps
Answer:
108.37°C
Explanation:
P₁ = Initial pressure = 101 kPa
V₁ = Initial volume = 530 m³
T₁ = Initial temperature = 10°C = 10+273.15 =283.15 K
P₂ = Final pressure = 101 kPa (because it is open to atmosphere)
V₂ = Final volume = 530 m³
P₁V₁ = n₁RT₁
⇒101×530 = n₁RT₁
⇒53530 J = n₁RT₁
P₂V₂ = n₂RT₂
⇒53530 J = n₂RT₂

Dividing the first two equations we get

∴Temperature must the air in the balloon be warmed before the balloon will lift off is 381.25-273.15 = 108.37°C