The correct answer is B. The nitrogen in the nitrogen cycle originate from the atmosphere. It forms approximately 78% of the Earth's atmosphere. However, this form is not usable because it is in its most stable form therefore unreactive. This nitrogen gas needs to be converted into nitrate compound for it to be usable. Then, the nitrogen cycle starts.<span />
<h2>
Hello!</h2>
The answer is:
The new volume is 2.84 L.

<h2>
Why?</h2>
To solve the problem, we need to remember what STP means. STP means that the gas is at standard temperature and pressure, or 273.15 K (0°C) and 1 atm.
Also, we need to use the Combined Gas Law, since the temperature, the pressure and the volume are being changed.
The Combined Gas Law establishes a relationship between the temperature, the pressure and the volume of an ideal gas using , Gay-Lussac's Law, Charles's Law, and Boyle's Law.
The law is defined by the following equation:

Where,
is the first pressure.
is the first volume.
is the first temperature.
is the second pressure.
is the second volume.
is the second temperature.
So, we are given the following information:

Then, isolating the new volume, and substituting, we have:

Hence, the new volume is 2.84 L.

Have a nice day!
First, we need to state the chemical equation for the combustion of PH3

And the mass of PH3 is 17.0 grams and we need to know the moles.
In the periodic table, the atomic mass of the P (phosphorus) is 31 and the atomic mass of the H (hydrogen) is 1.
So, you sum the mass of P to the mass of H multiplied by 3 and you obtain this:

With this data, we can search the moles of PH3:
Answer:
9.64g
Explanation:
The balanced equation for the reaction is given below:
2NH3 (g) —> 3H2 (g) + N2 (g)
Next, we need to calculate the mass NH3 that decomposed and the mass of H2 produced from the balanced equation. This is illustrated below:
Molar Mass of NH3 = 14 + (3x1) = 14 + 3 = 17g/mol
Mass of NH3 that decomposed from the balanced equation = 2 x 17 = 34g
Molar Mass of H2 = 2x1 = 2g/mol
Mass of H2 produced from the balanced equation = 3 x 2 = 6g.
Now, we can obtain the mass of H2 formed from 54.6g of NH3 as follow:
From the balanced equation above,
34g of NH3 decomposed to produce 6g of H2.
Therefore, 54.6g of NH3 will decompose to produce = (54.6x6)/34 = 9.64g of H2
Therefore, 9.64g of H2 can be obtained from 54.6g of NH3.