He was working with electrons
Answer:
c =0.2 J/g.°C
Explanation:
Given data:
Specific heat of material = ?
Mass of sample = 12 g
Heat absorbed = 48 J
Initial temperature = 20°C
Final temperature = 40°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 40°C -20°C
ΔT = 20°C
48 J = 12 g×c×20°C
48 J =240 g.°C×c
c = 48 J/240 g.°C
c =0.2 J/g.°C
I would think that b would be the right answer
Answer:
Large change in temperature makes heat flow fast.
Explanation:
Information would you need to know about the H₂O₂ solution is through stoichiometry experiment
The ideal gas constant R can be found experimentally by determining the number of moles of gas that occupies a particular measured volume at a known pressure and temprature and the H₂O₂ is a chemical compound used un various chemical reactions and is slightly viscous than water and the experiment by decomposition of hydrogen peroxide and using the ideal gas law rearrangement equation we can calculate the value of r and we will need the information such as concentration, volume and moles of H₂O₂ to determine its stoichiometry
Know more about ideal gas constant
brainly.com/question/20372603
#SPJ4