Answer:
The answer to your question is: The first option is correct.
Explanation:
From the data given, we conclude that as the amount of salt increases, the boiling point of water increases.
Options
If salt is added to water, the water will boil at a higher temperature This is the hypothesis for the experiment.
Salt makes water boil. This statement is not true.
If water is boiling, it must have salt added to it. This statement is incorrect, it is not the goal of the experiment.
If salt is added to water, the water will get cloudy There is not evidence of that from the information given.
Answer:
monoxide
dioxide
trioxide
tetroxide
pentoxide
hexoxide
heptoxide
octoxide
nonoxide
Explanation:
Just the way it is. If there is an -a or -o infront of the oxide(or another substance that starts with vowel), the a is often dropped.
Answer:
2.11 x 10²⁴ molecules.
Explanation:
- <em>It is known that every 1.0 mole of a molecule contains Avogadro's number of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of H₂O contains → 6.022 x 10²³ molecules.
3.5 mole of H₂O contains → ??? molecules.
∴ 3.5 mole of H₂O contain = (3.5 mol)(6.022 x 10²³) = 2.11 x 10²⁴ molecules.
Answer: P2O5 is the empirical formula.
Explanation: When given percentages you can assume that many grams of each atom are in the compound. Then you divide grams by the molar mass of each element, giving you moles. Once you have moles, divide by the smaller molar amount, which should give you 1 mol of Phosphorus and 2.5 mol of Oxygen. Then multiply by 2 in order for both moles to be a whole number. This gets you 2 and 5.
Answer: The percentage by mass of sulphur in
is 9.36%
Explanation:
Mass percent of an element is the ratio of mass of that element by the total mass expressed in terms of percentage.

Given: mass of sulphur = 32 g/mol
mass of
= 342 g/mol
Putting in the values we get:

The percentage by mass of sulphur in
is 9.36%