Answer:
The force of gravity acting on the car is <u>9800 N vertically downward.</u>
Explanation:
Given:
Mass of the car given is 1000 kg.
We know that the force of gravity is the force applied by the center of Earth on any body. The force of gravity is also called the weight of the body and always act towards the center of the Earth.
From Newton's second law, we know that the force acting on a body is equal to its mass and acceleration.
Here, the acceleration acting on the car is due to gravity and thus has a constant value of 9.8 m/s² on the surface of Earth.
Therefore, the force of gravity acting on the car is given using the Newton's second law as:
Force of gravity = Mass of car
Acceleration due to gravity.
Force of gravity = (1000 kg)
(9.8 m/s²)
Force of gravity = 9800 N [1 kg.m/s² = 1 N]
Therefore, the force of gravity acting on the car is 9800 N vertically downward.
Answer:
The appropriate answer is "9.225 g".
Explanation:
Given:
Required level,
= 63 ppm
Initial concentration,
= 22 ppm
Now,
The amount of free SO₂ will be:
= 
= 
= 
The amount of free SO₂ to be added will be:
= 
= 
∵ 1000 mg = 1 g
So,
= 
= 
Thus,
"9.225 g" should be added.
Explanation:
a) The amount of heat released by coffee will be absorbed by aluminium spoon.
Thus, 
To calculate the amount of heat released or absorbed, we use the equation:

Also,
..........(1)
where,
q = heat absorbed or released
= mass of aluminium = 45 g
= mass of coffee = 180 g
= final temperature = ?
= temperature of aluminium = 
= temperature of coffee = 
= specific heat of aluminium = 
= specific heat of coffee= 
Putting all the values in equation 1, we get:
![45 g\times 0.80J/g^oC\times (T_{final}-24^oC)=-[180 g\times 4.186J/g^oC\times (T_{final}-83^oC)]](https://tex.z-dn.net/?f=45%20g%5Ctimes%200.80J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-24%5EoC%29%3D-%5B180%20g%5Ctimes%204.186J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-83%5EoC%29%5D)

80.30 °C is the final temperature.
b) Energy flows from higher temperature to lower temperature.Whenever two bodies with different energies and temperature come in contact. And the resulting temperature of both bodies will less then the body with high temperature and will be more then the body with lower temperature.
So, is our final temperature of both aluminium and coffee that is 80°C less than initial temperature of coffee and more than the initial temperature of the aluminum.
None of the questions asked can be answered completely from the graph provided (GHG emissions: Direct, indirect and total Vs Year)
Reason:
1) Question A:<span>What caused a drop in GHG emissions around 2009?. This questions in pointing towards reason for drop of GHG emission around 2009. From the graph, it can be seen that there is a drop in GHG emission around 2009. However, information for reason for this drop is not available in graph.
2) Question B: </span>Did GHG emissions cause the melting of Arctic glaciers?. As mentioned earlier, the graph plotted provides information of GHG emissions: Vs Year. Information related to impact of GHG on environment is not available in graph.
3) Question C: <span>How much methane was emitted by homes between 1990 and 2000?. Graph provides information of direct and indirect emission for GHG. However, it lacks information about emission from residential or industrial sources.
4) </span>Question D: <span>Does industrial equipment release gases other than greenhouse gases?: Present study doesnot cover type of gases emitted from industrial equipment.
5) </span>Question E: <span>Which types of industries were included in the study?: Present graph has not specific information related to industries. </span>
Schrodinger developed a famous equation that allows the solutions for electron wave functions to be found given a specific potential. For the case of an atom, Schroginger's equation allows the determination of electron wave functions. These wave functions tell us how electrons are distributed in space around the atom.