Answer:
Explanation: In the previous section we listed four characteristics of radioactivity and nuclear decay that form the basis for the use of radioisotopes in the health and biological sciences. A fifth characteristic of nuclear reactions is that they release enormous amounts of energy. The first nuclear reactor to achieve controlled nuclear disintegration was built in the early 1940s by Enrico Fermi and his colleagues at the University of Chicago. Since that time, a great deal of effort and expense has gone into developing nuclear reactors as a source of energy. The nuclear reactions presently used or studied by the nuclear power industry fall into two categories: fission reactions and fusion reactions
Each element absorbs light at specific wavelengths unique to that atom. When astronomers look at an object's spectrum, they can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy.
hope this helps you! :-)
Answer : The molar mass of the unknown gas will be 79.7 g/mol
Explanation : To solve this question we can use graham's law;
Now we can use nitrogen as the gas number 2, which travels faster than gas 1;
So, 167 / 99 = 1.687 So the nitrogen gas is 1.687 times faster that the unknown gas 1
We can compare the rates of both the gases;
So here, Rate of gas 2 / Rate of gas 1 =
Now, 1.687 = square root [
]
When we square both the sides we get;
2.845 = (molar mass 1) / (28.01 g/mol N2)
On rearranging, we get,
2.845 X (28.01 g/mol N2) = Molar mass 1
So the molar mass of unknown gas will be = 79.7 g/mol
Answer:
6Fe^2+(aq) -------> 6Fe^3+(aq) + 6e
Explanation:
The balanced oxidation half equation is;
6Fe^2+(aq) -------> 6Fe^3+(aq) + 6e
A redox reaction is actually an acronym for oxidation-reducation reaction. Since the both reactions are complementary, there can't be oxidation without reduction and there can't be reduction without oxidation.
The main characteristic of redox reactions is that electrons are transferred in the process. The number of electrons transferred is usually deduced from the balanced reaction equation. For this reaction, the balanced overall reaction equation is;
Cr2O7^2–(aq) + 6Fe^2+(aq) +14H^+(aq)→ 2Cr^3+(aq) + 6Fe^3+ (aq) + 7H2O(l)
It is clear from the equation above that six electrons were transferred. Thus six Fe^2+ ions lost one electron each in the oxidation half equation as shown in the balanced oxidation half equation above.