Okay, so you need to start by finding the molar mass (grams in one mole) of nitrogen monoxide (NO).
N=14g
O=16g
So we know that NO has a molar mass of 30 grams, then just divide your given mass of 22.5 grams by the molar mass of 30 grams to find the number of molecules in your sample. The answer should be .75 molecules. Hope this helps!
<span>A. Helium </span>atomic number 2
hope it helps
Answer:
The symbol of isotopes used for blood flow analysis is
<u>Explanation:
</u>
- Isotopes are the substances that exhibit the same atomic number but has a different mass number of an element.
- The atomic number explains the number of protons present in the element and mass number explains the number of neutrons available in the element.
- For blood flow analysis, the isotope element is cerium-141 and it is used in the chemical examination of blood flow particles.
- Symbol used for this isotope is
, where 141 indicates the amount of mass present and 58 indicates the proton number and 83 indicates neutron number present in that element.
- The amount of mass in an atom is calculated by the sum of protons and neutrons present in it. Thus mass of isotope is 141 obtained by the sum of 58 protons and 83 neutrons present in that isotope.
Simple,
take a look at your periodic table, if you have it labeled look at the Halogen
Group, it includes: Flourine, Chlorine, Bromine, Iodine, and Astatine.
Now, a period on the periodic table is read from left to right, and goes
down the rows of the periodic table.
Go to Period 5, go all the way to the Halogens, what is there?
Iodine.
Thus, your answer.