Answer:
Magnetic energy and electromagnetic energy form of potential energy followed by a form of kinetic energy.
(B) is correct option.
Explanation:
Given that,
Lists a form of potential energy followed by a form of kinetic energy
We know that,
Sound energy :
The movement of energy through object it is called sound energy. When a object produced vibration by force then it moves in wave.
Sound wave is example of kinetic energy.
Nuclear energy :
The store energy in the nucleus of the atom it is called nuclear energy. This energy released when occurs fusion and fission.
Nuclear energy is the example of potential energy
Magnetic energy :
Magnetic energy is a type of potential energy which is depend on distance and position in the magnetic field.
Electromagnetic energy :
Electromagnetic energy is light energy. it is type of kinetic energy.
Gravitational energy :
Gravitational energy is a type of potential energy. It is an energy related with gravity or gravitational force.
Elastic energy :
The store energy in elastic object it is called elastic energy. This energy is a type of potential energy.
Electrical energy :
The movement of electrons is called electrical energy. When electrons move through a wire then it is are called electricity. Electrical energy is type of kinetic energy.
Hence, Magnetic energy and electromagnetic energy form of potential energy followed by a form of kinetic energy.
(B) is correct option.
Answer:
the power that can be generated by the river is 117.6 MW
Explanation:
Given that;
Volume flow rate of river v = 240 m³/s
Height above the lake surface a h = 50 m
Amount of power can be generated from this river water after the dam is filled = ?
Now the collected water in the dam contains potential energy which is used for the power generation,
hence, total mechanical energy is due to potential energy alone.
= m(gh)
first we determine the mass flow rate of the fluid m
m = p×v
where p is density ( 1000 kg/m³
so we substitute
m = 1000kg/m³ × 240 m³/s
m = 240000 kg/s
so we plug in our values into (
= m(gh) kJ/kg )
= 240000 × 9.8 × 50
= 117600000 W
= 117.6 MW
Therefore, the power that can be generated by the river is 117.6 MW
Answer:


Explanation:
The period of the comet is the time it takes to do a complete orbit:
T=1951-(-563)=2514 years
writen in seconds:

Since the eccentricity is greater than 0 but lower than 1 you can know that the trajectory is an ellipse.
Therefore, if the mass of the sun is aprox. 1.99e30 kg, and you assume it to be much larger than the mass of the comet, you can use Kepler's law of periods to calculate the semimajor axis:
![T^2=\frac{4\pi^2}{Gm_{sun}}a^3\\ a=\sqrt[3]{\frac{Gm_{sun}T^2}{4\pi^2} } \\a=1.50*10^{6}m](https://tex.z-dn.net/?f=T%5E2%3D%5Cfrac%7B4%5Cpi%5E2%7D%7BGm_%7Bsun%7D%7Da%5E3%5C%5C%20a%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGm_%7Bsun%7DT%5E2%7D%7B4%5Cpi%5E2%7D%20%7D%20%5C%5Ca%3D1.50%2A10%5E%7B6%7Dm)
Then, using the law of orbits, you can calculate the greatest distance from the sun, which is called aphelion:
