Answer:
Less than 18000N
Explanation:
Given

This question will be answered using Newton's third law.
Understanding this law, it implies that reaction force is equal and opposite to the force exerted.
This implies that;
If the force exerted on the ball is 18000N
the force exerted is -18000N
So, the option that answers the question is less than 18000N because -18000N < 18000N
Answer:
When an object vibrates, it causes movement in surrounding air molecules. These molecules bump into the molecules close to them, causing them to vibrate as well. This makes them bump into more nearby air molecules.
Cats have tails to help their balance. Similar to the stick a trapeze/high wire walker uses.
The tail helps to serve as a counterbalance when cats walk on narrow spaces such as fences or shelves. The tail also aids in balance when a cat is running after or jumping on prey.
Just so you know....Cats can live without tails.
Answer:
a) 9.99 s
b) 538 m
c) 20.5 s
d) 1160 m
Explanation:
Given:
x₀ = 0 m
y₀ = 49.0 m
v₀ = 113 m/s
θ = 60.0°
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
a) At the maximum height, the vertical velocity vᵧ = 0 m/s. Find t.
vᵧ = aᵧ t + v₀ᵧ
(0 m/s) = (-9.8 m/s²) t + (113 sin 60.0° m/s)
t ≈ 9.99 s
b) At the maximum height, the vertical velocity vᵧ = 0 m/s. Find y.
vᵧ² = v₀ᵧ² + 2aᵧ (y − y₀)
(0 m/s)² = (113 sin 60° m/s)² + 2 (-9.8 m/s²) (y − 49.0 m)
y ≈ 538 m
c) When the projectile lands, y = 0 m. Find t.
y = y₀ + v₀ᵧ t + ½ aᵧ t²
(0 m) = (49.0 m) + (113 sin 60° m/s) t + ½ (-9.8 m/s²) t²
You'll need to solve using quadratic formula:
t ≈ -0.489, 20.5
Since negative time doesn't apply here, t ≈ 20.5 s.
d) When the projectile lands, y = 0 m. Find x. (Use answer from part c).
x = x₀ + v₀ₓ t + ½ aₓ t²
x = (0 m) + (113 cos 60° m/s) (20.5 s) + ½ (0 m/s²) (20.5 s)²
x ≈ 1160 m