The pressure drop in pascal is 3.824*10^4 Pascals.
To find the answer, we need to know about the Poiseuille's formula.
<h3>How to find the pressure drop in pascal?</h3>
- We have the Poiseuille's formula,

- where, Q is the rate of flow, P is the pressure drop, r is the radius of the pipe, is the coefficient of viscosity (0.95Pas-s for Glycerin) and l being the length of the tube.
- By substituting values and rearranging we will get the pressure drop as,

Thus, we can conclude that, the pressure drop in pascal is 3.824*10^4.
Learn more about the Poiseuille's formula here:
brainly.com/question/13180459
#SPJ4
13-16 that is where they’re located at
The relationship between frequency and wavelength for an electromagnetic wave is

where
f is the frequency

is the wavelength

is the speed of light.
For the light in our problem, the frequency is

, so its wavelength is (re-arranging the previous formula)
The displacement of a moving object is the straight-line distance between the place it starts from and the place where it stops.
The displacement of anything moving along a circular track depends on how far around it goes before it stops. The greatest displacement it can possibly have is the diameter of the track ... 100m on this particular one ... because that's as far apart as two places on a circle can ever be.
The most interesting case is when the object goes around the circle exactly once. Then it stops at the same place it started from, the distance between the starting point and ending point is zero, and after all that motion, the displacement is zero.
Answer: Stage 1- Stars are born in a region of high density Nebula, and condenses into a huge globule of gas and dust and contracts under its own gravity. This image shows the Orion Nebula or M42 . Stage 2 - A region of condensing matter will begin to heat up and start to glow forming Protostars.
Explanation: