1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mylen [45]
3 years ago
15

(a) If two sound waves, one in a gas medium and one in a liquid medium, are equal in intensity, what is the ratio of the pressur

e amplitude of the wave in the liquid to that of the wave in the gas? Assume that the density of the gas is 2.27 kg/m3 and the density of the liquid is 972 kg/m3. The speed of sound is 376 m/s in the gas medium and 1640 m/s in the liquid. (b) If the pressure amplitudes are equal instead, what is the ratio of the intensities of the waves (of the one in the liquid to that in the gas)?
Physics
1 answer:
GarryVolchara [31]3 years ago
3 0

Answer:

(a) The ratio of the pressure amplitude of the waves is 43.21

(b) The ratio of the intensities of the waves is 0.000535

Explanation:

Given;

density of gas, \rho _g = 2.27 kg/m³

density of liquid, \rho _l = 972 kg/m³

speed of sound in gas, C_g = 376 m/s

speed of sound in liquid, C_l = 1640 m/s

The of the sound wave is given by;

I = \frac{P_o^2}{2 \rho C} \\\\P_o^2 = 2 \rho C I\\\\p_o = \sqrt{2 \rho CI}

Where;

P_o is the pressure amplitude

P_o_g= \sqrt{2 \rho _g C_gI} -------(1)\\\\P_o_l= \sqrt{2 \rho _l C_lI}---------(2)\\\\\frac{P_o_l}{P_o_g} = \frac{\sqrt{2 \rho _l C_lI}}{\sqrt{2 \rho _g C_gI}} \\\\\frac{P_o_l}{P_o_g} = \sqrt{\frac{2 \rho _l C_lI}{2 \rho _g C_gI} }\\\\ \frac{P_o_l}{P_o_g} = \sqrt{\frac{ \rho _l C_l}{ \rho _g C_g} }\\\\ \frac{P_o_l}{P_o_g} = \sqrt{\frac{ (972)( 1640)}{ (2.27)( 376)} }\\\\\frac{P_o_l}{P_o_g} = 43.21

(b) when the pressure amplitudes are equal, the ratio of the intensities is given as;

I = \frac{P_o^2}{2 \rho C}\\\\I_g = \frac{P_o^2}{2 \rho _g C_g}-------(1)\\\\I_l = \frac{P_o^2}{2 \rho _l C_l}-------(2)\\\\\frac{I_l}{I_g} = (\frac{P_o^2}{2 \rho _l C_l})*(\frac{2\rho_gC_g}{P_o^2} )\\\\\frac{I_l}{I_g} = \frac{\rho _gC_g}{\rho_lC_l} \\\\\frac{I_l}{I_g} = \frac{(2.27)(376)}{(972)(1640)}\\\\ \frac{I_l}{I_g} = 0.000535

You might be interested in
The average lifetime of μ-mesons with a speed of 0.95c is measured to be 6 x 10^6 s. Find the average lifetime of μ-mesons in a
Mnenie [13.5K]

Answer:

19.2*10^6 s

Explanation:

The equation for time dilation is:

t = \frac{t'}{\sqrt{1-\frac{v^2}{c^2}}}

Then, if it is observed to have a life of 6*10^6 s, and it travels at 0.95 c:

t = \frac{6*10^6}{\sqrt{1-\frac{(0.95c)^2}{c^2}}} = 19.2*10^6 s

It has a lifetime of 19.2*10^6 s when observed from a frame of reference in which the particle is at rest.

7 0
3 years ago
Picture question please answer do in 5 mins
alexandr402 [8]

Answer:

Can't see anything, please share clearly

4 0
3 years ago
Suppose a person pushes thumbtack that is 1/5 centimeter long into a bulletin board, and the force (in dynes) exerted when the d
mario62 [17]

Answer:

W = 290.7 dynes*cm

Explanation:

d = 1/5 cm = 0.2 cm

The force is in function of the depth x:

F(x) = 1000 * (1 + 2*x)^2

We can expand that as:

F(x) = 1000 * (1 + 4*x + 4x^2)

F(x) = 1000 + 4000*x + 4000*x^2

Work is defined as

W = F * d

Since we have non constant force we integrate

W = \int\limits^{0.2}_{0} {(1000 + 4000*x + 4000*x^2)} \, dx

W = [1000*x + 2000*x^2 + 1333*X^3] evaluated between 0 and 0.2

W = 1000*0.2 + 2000*0.2^2 + 1333*0.2^3 - 1000*0 - 2000*0^2 - 1333*0^3

W = 200 + 80 + 10.7 = 290.7 dynes*cm

3 0
3 years ago
Two large thin metal plates are parallel and close to each other. On their inner faces, the plates have excess surface charge of
wariber [46]

Answer:

For left = 0  N/C

For right = 0  N/C

At middle = -7.6836 * 10^{-11} \vec{i}  N/C

Explanation:

Given data :-

б =6.8 * 10^{-22} C/ m²

Considering the two thin metal plates to be non conducting sheets of charges.

Electric field is given by

E = \frac{\sigma }{2\varepsilon }

1) To the left of the plate

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(\vec{i})   = 0 N/C.

2) To the right of them.

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(\vec{i})   = 0 N/C.

3) Between them.

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(-\vec{i}) = (\frac{\sigma }{\varepsilon })(-\vec{i}) = -\frac{6.8 * 10^{-22} }{8.85 * 10 ^{-12} }  \vec{i} =   -7.6836 * 10^{-11} \vec{i} N/C

5 0
3 years ago
Please help with these questions
lord [1]
When do you gotta turn it in?
8 0
2 years ago
Other questions:
  • In the lens equation, the variable do represents the distance of the object from the ________.
    11·2 answers
  • At the instant a traffic light turns green, a car starts from rest with a given constant acceleration of 0.5 m/s squared. Just a
    12·1 answer
  • How do astronomers use rocks from the moon to estimate the age of the solar system?
    6·1 answer
  • If you run up the stairs (and don't fall) which of the following would be true?
    7·2 answers
  • The gravitational force acting on a lead ball is much larger than that acting on a wooden ball of the same size. Which statement
    8·1 answer
  • Which system of measurement does the u.s. use? the metric system the si system the english system us customary system
    9·2 answers
  • A chinook salmon needs to jump a waterfall that is 1.5 m high. If the fish starts from a distance of 1.00 m from the base of the
    7·1 answer
  • PLEASE HELPPPPPP <333​
    13·2 answers
  • Cause and Effect: What would happen to a space vehicle in orbit around Earth if it sped up?
    12·1 answer
  • Match the quote about working in government to the correct branch. Then name
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!