1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
podryga [215]
3 years ago
13

Now consider a different time interval: the interval between the initial kick and the moment when the ball reaches its highest p

oint. We want to find how long it takes for the ball to reach this point, and how high the ball goes. (e) What is the component of the ball’s velocity at the instant when the ball reaches its highest point (the end of this time interval)?
Physics
1 answer:
scZoUnD [109]3 years ago
3 0

Answer:A ball is kicked from a location < 9, 0, -8 > (on the ground) with initial velocity < -11, 18, -5 > m/s. The ball's speed is low enough that air resistance is negligible. What is the velocity of the ball 0.5 seconds after being kicked? (Use the Momentum Principle!) = m/s In this situation (constant force), which velocity will give the most accurate value for the location of the ball 0.5 seconds after it is kicked? The arithmetic average of the initial and final velocities. The final velocity of the ball. The initial velocity of the ball. What is the average velocity of the ball over this time interval? avg = Use the average velocity to find the location of the ball 0.5 seconds after being kicked: = m Now consider a different time interval: the interval between the initial kick and the moment when the ball reaches its highest point. We want to find how long it takes for the ball to reach this point, and how high the ball goes. What is the y-component of the ball's velocity at the instant when the ball reaches its highest point (the end of this time interval)? vyf = m/s. Fill in the missing numbers in the equation below (update form of the Momentum Principle): mvyf = mvyi + Fnet,y?t m = m + ?mg?t How long does it take for the ball to reach its highest point? ?t = s. Knowing this time, first find the y-component of the average velocity during this time interval, then use it to find the maximum height attained by the ball: ymax = m. Now take a moment to reflect on the reasoning used to solve this problem. You should be able to do a similar problem on your own, without prompting. Note that the only equations needed were the Momentum Principle and the expression for the arithmetic average velocity.

Explanation:

You might be interested in
A pendulum is in a spacecraft to measure
Tcecarenko [31]

Answer:

For small angles (✓ < 30 degrees), the period of a simple pendulum4can be approximated by: 3A radian is an angle measure based upon the circumference of a circle C =2⇡r where r is the radius of the circle. A complete circle (360 ) is said to have 2⇡ radians. Therefore, a 1/4 circle (90 )is⇡/2 radians.

Explanation:

4 0
3 years ago
Birdman is flying horizontally at a
den301095 [7]

Answer:

68 m

Explanation:

Given that the horizontal velocity of the birdman = 17 m/s and

the height, h= 78 m.

The gravitational force is acting in the downward direction, so it will not change the horizontal speed.

The horizontal speed will remains be constant and will be equal to the initial horizontal speed of the turd.

Initially, the turd was also flying horizontally with the birdman, so the initial velocity of the turd is the same as the horizontal velocity of the birdman, i.e In the horizontal direction, u_0=17 m/s.

In the vertical direction, u = 0,

The distance to be traveled, in the direction of application of force, is equals to the height of the turd, i.e

s= 78 m

Let t be the time taken to cover a distance of 78 m.

Now, applying the equation of motion in the vertical direction,

s=ut+\frac 12 at^2

where u is the initial velocity and a is the acceleration due to gravity in the direction of displacement,s.

Here, a=g=9.81 m/s^2, so

78=0\times t +\frac 12 (9.81)t^2

\Rightarrow t^2=(78\times2)/9.81

\Rightarrow t = 4 seconds.

Hence, the time taken to reach the ground is 4 seconds.

As the horizontal speed, u_0=17 m/s, is constant throughout the journey, so

the horizontal distance covered by turd

= u\times t

= 17 \times 4 = 68 m.

So, the distance of landing from the start of the field is 68 m as the birdman releases a turd directly  above the start of the field.

Hence, the robot must hold the bucket at a distance of 68 m from the start of the field.

5 0
3 years ago
A driverless car collides head on with a stationary sign. The collision brings the car to a stop, but does not move the sign.
neonofarm [45]

Answer:

I'm sorry hindi ko po alam ung sagot sorry po

4 0
2 years ago
Read 2 more answers
Detailed research on comets indicates that they cannot be older than HOW MANY years.
Free_Kalibri [48]
It would be, 1.000. Hope that helps :)
6 0
3 years ago
Read 2 more answers
A horizontal pipeline is 660 mm in diameter and carries oil at a rate of 150 kg/s. this oil has a mass density of 850 kg/m3 and
timurjin [86]
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
Read more on Brainly.com - brainly.com/question/1581851#readmore
6 0
3 years ago
Other questions:
  • The work done on a 10 kilogram mass to give it a speed of 5 meters per second is
    8·1 answer
  • The theory of _____ suggests that the crust of the earth is divided into pieces and moves about on the upper mantle.
    7·2 answers
  • The Milky Way is our Galax. Where are we located in Milky Way?​
    15·1 answer
  • A car has four tires that are each inflated to an absolute pressure of 2.0 x 10^5 Pa. Each tire has an area of 0.024 m^2 in cont
    7·1 answer
  • Which part of atoms will form an ionic compound?
    13·1 answer
  • The water in a lake is at 5 °C. A diver measures the pressure of the water at two different depths in the lake. He repeats the m
    15·1 answer
  • True or False. There is no gain or loss of matter in a<br> chemical reaction. *
    8·1 answer
  • All power plants use fuel to supply energy that turns into:
    12·1 answer
  • Someone please help me!! See PDF to help
    13·2 answers
  • Help me with this please. :))
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!