Answer:
-0.045 N, they will attract each other
Explanation:
The strength of the electrostatic force exerted on a charge is given by

where
q is the magnitude of the charge
E is the electric field magnitude
In this problem,

(negative because inward)
So the strength of the electrostatic force is

Moreover, the charge will be attracted towards the source of the electric field. In fact, the text says that the electric field points inward: this means that the source charge is negative, so the other charge (which is positive) is attracted towards it.
Answer:

Explanation:
As we know that resistance of one copper wire is given as

here we know that

now we have


now we know that such 17 resistors are connected in parallel so we have


Now if a single copper wire has same resistance then its diameter is D and it is given as

now from above two equations we have


now we have

Answer:
(a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Explanation:
Given that,
Power factor = 0.6
Power = 600 kVA
(a). We need to calculate the reactive power
Using formula of reactive power
...(I)
We need to calculate the 
Using formula of 

Put the value into the formula


Put the value of Φ in equation (I)


(b). We draw the power triangle
(c). We need to calculate the reactive power of a capacitor to be connected across the load to raise the power factor to 0.95
Using formula of reactive power


We need to calculate the difference between Q and Q'

Put the value into the formula


Hence, (a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Answer:
Conservation of angular momentum
Explanation:
When the objects spread in universe after big bang, because of the tremendous force , they gained angular momentum and started to rotate. Since, then the object continue to rotate on their axis because of conservation of angular momentum. In vacuum of space there no other forces that can stop these rotation, therefore, they continue to rotate.