When a swimmer pushes through water to swim they are propelled forward because of the water resistance against the hand and feet. It's A. The water doesn't automatically push the swimmer forward. It releases a reaction after the swimmer pushes through the water.
D is the answer. Bc the pointy
Answer:
The formula for calculating force is F= Mass × Acceleration
Explanation:
Newton is what force is measured in
Answer:
The answer is "
"
Explanation:
For point a:
Energy balance equation:


From the above equation:

because the rate of air entering the tank that is
constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between
. The surrounding air
temperature:

Substituting the value from ideal gas:

Follow the ideal gas table.
The
and between temperature
Interpolate

Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas.
(M is the molar mass of the gas that is
and R is gas constant), and T is the temperature.


For point c:
Entropy is given by the following formula:

<h2>
Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.</h2>
Explanation:
Let speed of motor boat be m and speed of current be c.
A motorboat traveling with a current can go 160 km in 4 hours.
Distance = 160 km
Time = 4 hours
Speed = m + c
We have
Distance = Speed x Time
160 = (m+c) x 4
m + c = 40 --------------------- eqn 1
Against the current it takes 5 hours to go the same distance.
Distance = 160 km
Time = 5 hours
Speed = m - c
We have
Distance = Speed x Time
160 = (m-c) x 5
m - c = 32 --------------------- eqn 2
eqn 1 + eqn 2
2m = 40 + 32
m = 36 km/hr
Substituting in eqn 1
36 + c = 40
c = 4 km/hr
Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.