Answer: 704
Explanation:Vi = 0 m/s
vf = 65 m/s
a = 3 m/s2
d = ??
vf2 = vi2 + 2*a*d
(65 m/s)2 = (0 m/s)2 + 2*(3 m/s2)*d
4225 m2/s2 = (0 m/s)2 + (6 m/s2)*d
(4225 m 2/m2)/(6 m/s2) = d
d = 704 m
Any change in the speed or direction of motion is called "acceleration". You'll hear "deceleration" used for slowing down but that's not technically correct.
I think its a higher frequency
Answer:
(a) Potential energy of the child is converted into the kinetic energy at the bottom off the slide and a part of which is lost into friction generating heat between the contact surfaces.
(b) 
Explanation:
Given:
- mass of the child,

- height of the slide,

- initial velocity of the child at the slide,

- final velocity of the child at the bottom of slide,

(a)
∴The initial potential energy of the child is converted into the kinetic energy at the bottom off the slide and a part of which is lost into friction generating heat between the contact surfaces.
Initial potential energy:



Kinetic energy at the bottom of the slide:



(b)
Now, the difference in the potential and kinetic energy is the total change in the thermal energy of the slide and the seat of her pants.
This can be given as:


