1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tamiku [17]
3 years ago
10

how much power does an electric device use if the current is 36.0 amps and the resistance is 3.9 ohms? a. 140 watts b. 5,100 wat

ts c. 550 watts d. 9.2 watts
Physics
1 answer:
kakasveta [241]3 years ago
5 0
P = I²R          

where P = Power in Watts, I = Current in Ampere, R = Resistance in ohms.

P = 36<span>² * 3.9 = 5054.4
 
P </span>≈ 5100 watts.
<span>
Option B.  </span>
You might be interested in
A positive point charge Q is fixed on a very large horizontal frictionless tabletop. A second positive point charge q is release
Scilla [17]

Answer:

(A) As it moves farther and farther from Q, its speed will keep increasing.

Explanation:

When a positive charge Q is fixed on a horizontal frictionless tabletop and a second charge q is released near to it then according to the Coulombs law the force acting on it decreases with the square of the distance between them.

Mathematically:

F=\frac{1}{4\pi.\epsilon_0} \times \frac{Q.q}{r^2}

where:

r = distance between the charges

\epsilon_0= permittivity of free space

By the Newtons' second law of motion if the we know that the acceleration is directly proportional to the force applied. So as  the distance between the charges increases the its acceleration also decreases therefore now the charge feels less acceleration but still continues to accelerate with a fading magnitude.

7 0
3 years ago
Two strings are adjusted to vibrate at exactly 202 Hz. Then the tension in one string isincreased slightly. Afterward, three bea
Semenov [28]

The concepts necessary to solve this problem are framed in the expression of string vibration frequency as well as the expression of the number of beats per second conditioned at two frequencies.

Mathematically, the frequency of the vibration of a string can be expressed as

f = \frac{1}{2L}\sqrt{\frac{T}{\mu}}

Where,

L = Vibrating length string

T = Tension in the string

\mu = Linear mass density

At the same time we have the expression for the number of beats described as

n = |f_1-f_2|

Where

f_1 = First frequency

f_2 = Second frequency

From the previously given data we can directly observe that the frequency is directly proportional to the root of the mechanical Tension:

f \propto \sqrt{T}

If we analyze carefully we can realize that when there is an increase in the frequency ratio on the tight string it increases. Therefore, the beats will be constituted under two waves; one from the first string and the second as a residue of the tight wave, as well

n = f_2-f_1

f_2 = n+f_1

Replacing 3/sfor n and 202Hz for f_1,

f_2 = 3/s + 202Hz

f_2 = 3/s(\frac{1Hz}{1/s})+202Hz

f_2 = 206Hz

The frequency of the tightened is 205Hz

7 0
3 years ago
A ball rolls off the edge of a table with a fairly large horizontal velocity. Which of the following statements are true? (Selec
Degger [83]

Answer:

A.The vertical velocity is constantly increasing as the ball falls.

B.The horizontal velocity does not noticeably change as the ball falls.

G.The horizontal velocity does not affect how long it will take the ball to fall to the floor.

H.The velocity vector of the ball changes as it travels through the air.

Explanation:

As the ball is projected horizontally so here the vertical component of the velocity is zero

So the time to reach the ground is given as

H = \frac{1}{2} gt^2

so we will have

t = \sqrt{\frac{2H}{g}}

so this is the same time as the ball is dropped from H height

Since there is no force in horizontal direction so its horizontal velocity will always remain constant while vertical velocity will change at constant rate which is equal to acceleration due to gravity.

So overall the velocity vector will change due to net acceleration g

4 0
3 years ago
The edge of a flying disc with a radius of 0.13 m spins with a tangential speed of 3.3 m/s. The centripetal acceleration of the
Marat540 [252]

Answer:

Centripetal acceleration = 83.77m/s²

Explanation:

<u>Given the following data;</u>

Radius, r = 0.13m

Velocity, v = 3.3m/s

To find centripetal acceleration;

Centripetal acceleration is given by the formula;

Acceleration, a = \frac {v^{2}}{r}

Substituting into the equation, we have;

Centripetal \; acceleration, a = \frac {3.3^{2}}{0.13}

Centripetal \; acceleration, a = \frac {10.89}{0.13}

<em>Centripetal acceleration = 83.77m/s²</em>

<em>Therefore, the centripetal acceleration of the edge of the disc is 83.77 m/s². </em>

5 0
3 years ago
Read 2 more answers
the police department determined that the force required to drag a 130 N(29 lb) car tire across the pavement at a constant veloc
ki77a [65]
The force of friction is given by:
f = μR, where μ is the friction coefficient and R is the reaction force, which will be equal to the weight.
100 = μ x 130
μ = 0.77
4 0
3 years ago
Other questions:
  • The movie "The Gods Must Be Crazy" begins with a pilot dropping a bottle out of an airplane. A surprised native below, who think
    7·1 answer
  • The intensity of a certain siren is 0.060 W/m^2 from a distance of 25 meters. What is the intensity of this siren at a distance
    15·1 answer
  • A nucleus in a transition from an excited state emits a gamma-ray photon with an energy of 2.5 MeV. (a)
    10·1 answer
  • These problems involve Impulse-Mometum theorem, and the Work-Kinetic Energy theorem. Both theorems are combinations of Newton's
    7·1 answer
  • Mendeleev arranged the known chemical elements in a table according to increasing
    8·1 answer
  • HEEEEELLLLLPPPPP!!!!!!!?!?!?!????!
    5·2 answers
  • On what factors capacitance of parallel plate capacitor depends?
    13·1 answer
  • Catching a wave, a 77-kg surfer starts with a speed of 1.3 m&gt;s, drops through a height of 1.65 m, and ends with a speed of 8.
    14·1 answer
  • 1)A chocolate bar measures 10 cm long by 2 cm wide and is 2 cm thick
    9·1 answer
  • Which statement best compares potential and kinetic energy?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!