85 N - 40 N = 45 N
And depending on direction the greater force is being pulled towards
Answer:
The current can't 'split down the parallel branch, because the diode is reverse biased so is blocking the flow of current. So basically it's acting as an open circuit. Also when the current flows it wouldn't reduce the currents amount flow through the resistor.
Explanation:
Answer:
f1 = -3.50 m
Explanation:
For a nearsighted person an object at infinity must be made to appear to be at his far point which is 3.50 m away. The image of an object at infinity must be formed on the same side of the lens as the object.
∴ v = -3.5 m
Using mirror formula,
i/f1 = 1/v + 1/u
Where f1 = focal length of the contact lens, v = image distance = -3.5 m, u = object distance = at infinity(∞) = 1/0
∴ 1/f1 = (1/-3.5) + 1/infinity
Note that, 1/infinity = 1/(1/0) = 0/1 =0.
∴ 1/f1 = 1/(-3.5) + 0
1/f1 = 1/(-3.5)
Solving the equation by finding the inverse of both side of the equation.
∴ f1 = -3.50 m
Therefore a converging lens of focal length f1 = -3.50 m
would be needed by the person to see an object at infinity clearly
Your position in meters will, measured relative to the starting point of the car behind you, be
x1(t) = 10 + 23.61 t - 1/2 4.2 t^2
his position will be
x2(t) = 16.67 t
Hence at any time the separation s(t) will be
s(t) = x1(t) - x2(t) = 10 + 6.94 t -2.1 t^2
Now I assume you mean that you will decelerate UNTIl you are driving at the legal speed limit (60 km/h). That will take you:
16.67 m/s = 23.61m/s - 4.2 m/s^2 * t
t = 1.65 seconds
What is the separation at that time? If it is still greater than zero, there will be no collision:
s(1.65) = 10 + 6.94 *1.65 -2.1 (1.65)^2 = 15.73 meters.
Hence you will NOT collide. The 1.65 s you calculated was the time needed to brake to the speed of 60 km/h.